Skip to main content

Design of AAV Vectors for Delivery of RNAi

  • Protocol
  • First Online:
Adeno-Associated Virus Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1950))

Abstract

Adeno-associated viral vectors have emerged as an important tool for human gene therapy, having demonstrated high transduction efficiency in a broad range of target tissues, a good safety profile in animal models and human clinical trials, and prospective long-lasting gene expression. First discovered 20 years ago, RNA interference (RNAi) has become another important tool for human gene therapy, enabling scientists to move on from classical gene transfer to gene silencing approaches, or combinations thereof. In this chapter, we describe a simple step-by-step method that will allow gene silencing novices to design their own artificial miRNAs against a target of their choice, clone these miRNAs into an AAV-based vector, and rapidly screen for highly efficient artificial miRNAs. The described method takes into consideration recent advances in the field including miRNA processing from various cellular miRNA backbones, choice between polymerase II and III promoters, and the potential impact of these factors on toxicity as it relates to off-targeting and to saturation of the endogenous RNAi machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  2. McCaffrey AP, Meuse L, Pham TT, Conklin DS, Hannon GJ, Kay MA (2002) RNA interference in adult mice. Nature 418(6893):38–39. https://doi.org/10.1038/418038a

    Article  CAS  PubMed  Google Scholar 

  3. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, Lowes L, Alfano L, Berry K, Church K, Kissel JT, Nagendran S, L’Italien J, Sproule DM, Wells C, Cardenas JA, Heitzer MD, Kaspar A, Corcoran S, Braun L, Likhite S, Miranda C, Meyer K, Foust KD, Burghes AHM, Kaspar BK (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377(18):1713–1722. https://doi.org/10.1056/NEJMoa1706198

    Article  CAS  PubMed  Google Scholar 

  4. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, Wittes J, Pappas J, Elci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingfield L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390(10097):849–860. https://doi.org/10.1016/S0140-6736(17)31868-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, Yang L, Kotin RM, Paulson HL, Davidson BL (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 102(16):5820–5825. https://doi.org/10.1073/pnas.0501507102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boudreau RL, Martins I, Davidson BL (2009) Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 17(1):169–175. https://doi.org/10.1038/mt.2008.231

    Article  CAS  PubMed  Google Scholar 

  7. McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I, Gilmore BL, Burstein H, Peluso RW, Polisky B, Carter BJ, Davidson BL (2008) Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci U S A 105(15):5868–5873. https://doi.org/10.1073/pnas.0801775105

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miniarikova J, Zanella I, Huseinovic A, van der Zon T, Hanemaaijer E, Martier R, Koornneef A, Southwell AL, Hayden MR, van Deventer SJ, Petry H, Konstantinova P (2016) Design, characterization, and lead selection of therapeutic miRNAs targeting Huntingtin for development of gene therapy for Huntington’s disease. Mol Ther Nucleic Acids 5:e297. https://doi.org/10.1038/mtna.2016.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miniarikova J, Zimmer V, Martier R, Brouwers CC, Pythoud C, Richetin K, Rey M, Lubelski J, Evers MM, van Deventer SJ, Petry H, Deglon N, Konstantinova P (2017) AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther 24(10):630–639. https://doi.org/10.1038/gt.2017.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foust KD, Salazar DL, Likhite S, Ferraiuolo L, Ditsworth D, Ilieva H, Meyer K, Schmelzer L, Braun L, Cleveland DW, Kaspar BK (2013) Therapeutic AAV9-mediated suppression of mutant SOD1 slows disease progression and extends survival in models of inherited ALS. Mol Ther 21(12):2148–2159. https://doi.org/10.1038/mt.2013.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfister EL, Chase KO, Sun H, Kennington LA, Conroy F, Johnson E, Miller R, Borel F, Aronin N, Mueller C (2017) Safe and efficient silencing with a Pol II, but Not a Pol lII, promoter expressing an artificial miRNA targeting human Huntingtin. Mol Ther Nucleic Acids 7:324–334. https://doi.org/10.1016/j.omtn.2017.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pfister EL, DiNardo N, Mondo E, Borel F, Conroy F, Fraser C, Gernoux G, Han X, Hu D, Johnson E, Kennington L, Liu P, Reid SJ, Sapp E, Vodicka P, Kuchel T, Morton AJ, Howland D, Moser R, Sena-Esteves M, Gao G, Mueller C, DiFiglia M, Aronin N (2018) Artificial miRNAs reduce human mutant Huntingtin throughout the striatum in a transgenic sheep model of Huntington’s disease. Hum Gene Ther 29(6):663–673. https://doi.org/10.1089/hum.2017.199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borel F, Gernoux G, Cardozo B, Metterville JP, Toro Cabrera GC, Song L, Su Q, Gao GP, Elmallah MK, Brown RH Jr, Mueller C (2016) Therapeutic rAAVrh10 mediated SOD1 silencing in adult SOD1(G93A) mice and nonhuman primates. Hum Gene Ther 27(1):19–31. https://doi.org/10.1089/hum.2015.122

    Article  CAS  PubMed  Google Scholar 

  14. Borel F, Tang Q, Gernoux G, Greer C, Wang Z, Barzel A, Kay MA, Shultz LD, Greiner DL, Flotte TR, Brehm MA, Mueller C (2017) Survival advantage of both human hepatocyte xenografts and genome-edited hepatocytes for treatment of alpha-1 antitrypsin deficiency. Mol Ther 25(11):2477–2489. https://doi.org/10.1016/j.ymthe.2017.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Borel F, Gernoux G, Sun H, Stock R, Blackwood M, Brown RH Jr, Mueller C. (2018). Safe and effective superoxide dismutase 1 silencing using artificial microRNA in macaques. Sci Transl Med. 10(465). pii: eaau6414. https://doi.org/10.1126/scitranslmed.aau6414. PMID: 30381409

    Article  PubMed  Google Scholar 

  16. Borel F, Kay MA, Mueller C (2014) Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Mol Ther 22(4):692–701. https://doi.org/10.1038/mt.2013.285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saini HK, Griffiths-Jones S, Enright AJ (2007) Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci U S A 104(45):17719–17724. https://doi.org/10.1073/pnas.0703890104

    Article  PubMed  PubMed Central  Google Scholar 

  18. Grimm D (2011) The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression. Silence 2:8. https://doi.org/10.1186/1758-907X-2-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao Z, Harwig A, Berkhout B, Herrera-Carrillo E (2017) Mutation of nucleotides around the +1 position of type 3 polymerase III promoters: the effect on transcriptional activity and start site usage. Transcription 8(5):275–287. https://doi.org/10.1080/21541264.2017.1322170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gray SJ, Foti SB, Schwartz JW, Bachaboina L, Taylor-Blake B, Coleman J, Ehlers MD, Zylka MJ, McCown TJ, Samulski RJ (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22(9):1143–1153. https://doi.org/10.1089/hum.2010.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan Z, Yan H, Ou H (2012) Human thyroxine binding globulin (TBG) promoter directs efficient and sustaining transgene expression in liver-specific pattern. Gene 506(2):289–294. https://doi.org/10.1016/j.gene.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  22. Kugler S, Kilic E, Bahr M (2003) Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther 10(4):337–347. https://doi.org/10.1038/sj.gt.3301905

    Article  CAS  PubMed  Google Scholar 

  23. Beltran WA, Boye SL, Boye SE, Chiodo VA, Lewin AS, Hauswirth WW, Aguirre GD (2010) rAAV2/5 gene-targeting to rods: dose-dependent efficiency and complications associated with different promoters. Gene Ther 17(9):1162–1174. https://doi.org/10.1038/gt.2010.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie J, Mao Q, Tai PWL, He R, Ai J, Su Q, Zhu Y, Ma H, Li J, Gong S, Wang D, Gao Z, Li M, Zhong L, Zhou H, Gao G (2017) Short DNA hairpins compromise recombinant adeno-associated virus genome homogeneity. Mol Ther 25(6):1363–1374. https://doi.org/10.1016/j.ymthe.2017.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mueller C, Tang Q, Gruntman A, Blomenkamp K, Teckman J, Song L, Zamore PD, Flotte TR (2012) Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol Ther 20(3):590–600. https://doi.org/10.1038/mt.2011.292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fang W, Bartel DP (2015) The menu of features that define primary MicroRNAs and enable de novo design of MicroRNA genes. Mol Cell 60(1):131–145. https://doi.org/10.1016/j.molcel.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mueller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Borel, F., Mueller, C. (2019). Design of AAV Vectors for Delivery of RNAi. In: Castle, M. (eds) Adeno-Associated Virus Vectors. Methods in Molecular Biology, vol 1950. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9139-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9139-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9138-9

  • Online ISBN: 978-1-4939-9139-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics