Skip to main content

Advertisement

Log in

Production of Plant Bioactive Triterpenoid Saponins: Elicitation Strategies and Target Genes to Improve Yields

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Triterpenoid saponins are a class of plant secondary metabolites with structure derived from the precursor oxidosqualene in which one or more sugar residues are added. They have a wide range of pharmacological applications, such as antiplatelet, hypocholesterolemic, antitumoral, anti-HIV, immunoadjuvant, anti-inflammatory, antibacterial, insecticide, fungicide and anti-leishmanial agents. Their accumulation in plant cells is stimulated in response to changes mediated by biotic and abiotic elicitors. The enhancement of saponin yields by methyl jasmonate in plants and cell cultures in several species indicates the involvement of these metabolites in plant defence mechanisms. The elucidation of their biosynthesis at the molecular level has advanced recently. Most studies to date have focused on the participation of early enzymes in the pathway, including oxidosqualene cyclase, squalene synthase and dammarenediol synthase, as well as in isolating and characterizing genes that encode β-amyrin synthase. Yields of bioactive saponins in various plant species and experimental systems have been successfully increased by treating cells and tissues with jasmonate or by exposing these to oxidative stress. These elicitation and molecular studies are consolidating a robust knowledge platform from which to launch the development of improved sources for commercial supply of bioactive saponins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yan, M. C., Liu, Y., Chen, H., Ke, Y., Xu, Q. C., & Cheng, M. S. (2006). Synthesis and antitumor activity of two natural N-acetylglucosamine-bearing triterpenoid saponins: Lotoidoside D and E. Bioorganic & Medicinal Chemistry Letters, 16, 4200–4204.

    Article  CAS  Google Scholar 

  2. Ma, Y. X., Fu, H. Z., Li, M., Sun, W., Xu, B., & Cui, J. R. (2007). An anticancer effect of a new saponin component from Gymnocladus chinensis Baillon through inactivation of nuclear factor-kappa B. Anti-Cancer Drugs, 18(1), 41–46.

    Article  CAS  Google Scholar 

  3. Kuo, R. Y., Qian, K., Morris-Natschke, S. L., & Lee, K. H. (2009). Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Natural Products Reports, 26, 1321–1344.

    Article  CAS  Google Scholar 

  4. Fleck, J. D., Kauffmann, C., Spilki, F., Lencina, C. L., Roehe, P. M., & Gosmann, G. (2006). Adjuvant activity of Quillaja brasiliensis saponins on the immune responses to bovine herpesvirus type 1 in mice. Vaccine, 24, 7129–7134.

    Article  CAS  Google Scholar 

  5. Sun, H. X., Ye, Y. P., Pan, H. J., & Pan, Y. J. (2004). Adjuvant effect of Panax notoginseng saponins on the immune responses to ovalbumin in mice. Vaccine, 22, 3882–3889.

    Article  CAS  Google Scholar 

  6. Kupeli, E., Tatli, I. I., Akdemir, Z. S., & Yesilada, E. (2007). Bioassay-guided isolation of anti-inflammatory and antinociceptive glycoterpenoids from the flowers of Verbascum lasianthum Boiss. ex Bentham. Journal of Ethnopharmacology, 110, 444–450.

    Article  CAS  Google Scholar 

  7. Ponou, B. K., Barboni, L., Teponno, R. B., Mbiantcha, M., Niguelefack, T. B., Park, H. J., et al. (2008). Polyhydroxyoleanane-type triterpenoids from Combretum molle and their anti-inflammatory activity. Phytochemistry Letters, 1, 183–187.

    Article  CAS  Google Scholar 

  8. Sparg, S. G., Light, M. E., & Staden, J. (2004). Biological activities and distribution of plant saponins. Journal of Ethnopharmacology, 94, 219–243.

    Article  CAS  Google Scholar 

  9. Rajput, V. K., & Mukhopadhyay, B. (2008). Concise synthesis of a pentasaccharide related to the anti-leishmanial triterpenoid saponin isolated from Maesa balansae. Journal of Organic Chemistry, 73, 6924–6927.

    Article  CAS  Google Scholar 

  10. Vermeersch, M., Foubert, K., da Luz, R. I., Puyvelde, V., Pieters, L., Cos, P., et al. (2009). Selective antileishmania activity of 13, 28-epoxy-oleanane and related triterpene saponins from the plant families Myrsinaceae, Primulaceae, Aceraceae and Icacinaceae. Phytotherapy Research, 23, 1404–1410.

    Article  CAS  Google Scholar 

  11. Vincken, J. P., Heng, L., Groot, A., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68, 275–297.

    Article  CAS  Google Scholar 

  12. Wu, J. Y., Wong, K., Ho, K. P., & Zhou, L. G. (2005). Enhancement of saponin production in Panax ginseng cell culture by osmotic stress and nutrient feeding. Enzyme and Microbial Technology, 36, 133–138.

    Article  CAS  Google Scholar 

  13. Higson, A. P., & Hamer, A. (2009). Specialty non-food crops. In A. E. Osbourn & V. Lanzotti (Eds.), Plant-derived natural products (pp. 569–584). New York, NY: Springer.

    Chapter  Google Scholar 

  14. Taylor, K., Nguyen, A., & Stéphenne, J. (2009). The need for new vaccines. Vaccine, 27 S, G3–G8.

    Article  CAS  Google Scholar 

  15. Cammareri, M., Consiglio, M. F., Pecchia, P., Corea, G., Lanzotti, V., Iebas, J. I., et al. (2008). Molecular characterization of β-amyrin synthase from Aster sedifolius L. and triterpenoid saponin analysis. Plant Science, 175, 255–261.

    Article  CAS  Google Scholar 

  16. Han, J. Y., Kwon, Y. S., Yang, D. C., Jung, Y. R., & Choi, Y. E. (2006). Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiology, 47, 1653–1662.

    Article  CAS  Google Scholar 

  17. Jung, J. D., Park, H. W., Hahn, Y., Hur, C. G., In, D. S., Chung, H. J., et al. (2003). Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Reports, 22, 224–230.

    Article  CAS  Google Scholar 

  18. Shibuya, M., Hoshino, M., Katsube, Y., Hayashi, H., Kushiro, T., & Ebizuka, Y. (2006). Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. The FEBS Journal, 273, 948–959.

    Article  CAS  Google Scholar 

  19. Choi, D. W., Jung, J. D., Ha, Y. I., Park, H. W., In, D. S., Chung, H. J., et al. (2005). Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports, 23, 557–566.

    Article  CAS  Google Scholar 

  20. Yue, C. J., & Zhong, J. J. (2005). Purification and characterization of UDPG: ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochemistry, 40, 3742–3748.

    Article  CAS  Google Scholar 

  21. Wu, Q., Song, J., Sun, Y., Suo, F., Li, C., Luo, H., et al. (2010). Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcription regulation. Physiologia Plantarum, 138, 134–149.

    Article  CAS  Google Scholar 

  22. Kim, O. K., Ahn, J. C., Hwang, S. J., & Hwang, B. (2005). Cloning and expression of a farnesyl diphosphate synthase in Centella asiatica (L.) Urban. Molecules and Cells, 19, 294–299.

    CAS  Google Scholar 

  23. Lee, M. H., Jeong, J. H., Seo, J. W., Shin, C. G., Kim, Y. S., In, J. G., et al. (2004). Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiology, 45, 976–984.

    Article  CAS  Google Scholar 

  24. Seo, J. W., Jeong, J. H., Shin, C. G., Lo, S. C., Han, S. S., Yu, K. W., et al. (2005). Overexpression of squalene synthase in Eleutherococcus senticosus increases phytosterol and triterpene accumulation. Phytochemistry, 66, 869–877.

    Article  CAS  Google Scholar 

  25. Liang, Y. L., Zhao, S. J., & Zhang, X. (2009). Antisense suppression of cycloartenol synthase results in elevated ginsenoside levels in Panax ginseng hairy roots. Plant Molecular Biology Reporter, 27, 298–304.

    Article  CAS  Google Scholar 

  26. Tansakul, P., Shibuya, M., Kushiro, T., & Ebizuka, Y. (2006). Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng. FEBS Letters, 580, 5143–5149.

    Article  CAS  Google Scholar 

  27. Kim, O. K., Kim, M. Y., Huh, S. M., Bai, D. G., Ahn, J. C., & Hwang, B. (2005). Cloning of a cDNA probably encoding oxidosqualene cyclase associated with asiaticoside biosynthesis from Centella asiatica (L.) Urban. Plant Cell Reports, 24, 304–311.

    Article  CAS  Google Scholar 

  28. Mangas, S., Moyano, E., Osuna, L., Cusido, R. M., Bonfill, M., & Palazón, J. (2008). Triterpenoid saponin content and the expression level of some related genes in calli of Centella asiatica. Biotechnology Letters, 30, 1853–1859.

    Article  CAS  Google Scholar 

  29. Kim, O. T., Lee, J. W., Bang, K. H., Kim, Y. C., Hyun, D. Y., Cha, S. W., et al. (2009). Characterization of dammarenediol synthase in Centella asiatica (L.) Urban. Plant Physiology and Biochemistry, 47, 998–1002.

    Article  CAS  Google Scholar 

  30. Kajikawa, M., Yamato, K. T., Fuzukawa, H., Sakai, Y., Uchida, H., & Ohyama, K. (2005). Cloning and characterization of a cDNA encoding β-amyrin synthase from petroleum plant Euphorbia tirucalli L. Phytochemistry, 66, 1759–1766.

    Article  CAS  Google Scholar 

  31. Liu, Y. L., Cai, Y. F., Zhao, Z. J., Wang, J. F., Li, J., Xin, W., et al. (2009). Cloning and functional analysis of a β-amyrin synthase gene associated with oleanolic acid biosynthesis in Gentiana straminea maxim. Biological and Pharmaceutical Bulletin, 32, 818–824.

    Article  CAS  Google Scholar 

  32. Confalonieri, M., Cammareri, M., Biazzi, E., Pecchia, P., Fevereiro, M. P. S., Balestrazzi, A., et al. (2009). Enhanced triterpene saponin biosynthesis and root nodulation in transgenic barrel medic (Medicago truncatula Gaertn.) expressing a novel β-amyrin synthase (AsOXA1) gene. Plant Biotechnology Journal, 7(2), 172–182.

    Article  CAS  Google Scholar 

  33. Meesapyodsuk, D., Balsevich, J., Reed, D. W., & Covello, P. S. (2007). Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase. Plant Physiology, 143, 959–969.

    Article  CAS  Google Scholar 

  34. Achnine, L., Huhman, D. V., Farag, M. A., Sumner, L. W., Blount, J. W., & Dixon, R. A. (2005). Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula. Plant Journal, 41, 875–887.

    Article  CAS  Google Scholar 

  35. Kim, O. T., Bang, K. H., Kim, Y. C., Hyun, D. Y., Kim, M. Y., & Cha, S. W. (2009). Upregulation of ginsenoside and gene expression related to triterpene biosynthesis in ginseng hairy root cultures elicited by methyl jasmonate. Plant Cell, Tissue and Organ Culture, 98, 25–33.

    Article  CAS  Google Scholar 

  36. Qi, X., Bakht, S., Leggett, M., Maxwell, C., Melton, R., & Osbourn, A. (2004). A gene cluster for secondary metabolism in oat: implications for the evolution of metabolic diversity in plants. Proceedings of the National Academy of Sciences of the United States of America, 101, 8233–8238.

    Article  CAS  Google Scholar 

  37. Qi, X., Bakht, S., Qin, B., Leggett, M., Hemmings, A., Mellon, F., et al. (2006). A different function for a member of an ancient and highly conserved cytochrome P450 family: from essential sterols to plant defense. Proceedings of the National Academy of Sciences of the United States of America, 103, 18848–18853.

    Article  CAS  Google Scholar 

  38. Mylona, P., Owatworakit, A., Papadopoulou, K., Jenner, H., Qin, B., Findlay, K., et al. (2008). Sad3 and Sad4 are required for saponin biosynthesis and root development in oat. Plant Cell, 20, 201–212.

    Article  CAS  Google Scholar 

  39. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.

    Article  CAS  Google Scholar 

  40. Staswick, P. (2008). JAZing up jasmonte signaling. Trends in Plant Science, 13, 66–71.

    Article  CAS  Google Scholar 

  41. Mangas, S., Bonfill, L., Osuna, L., Moyano, E., Tortoriello, J., Cusido, R. M., et al. (2006). The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 67, 2041–2049.

    Article  CAS  Google Scholar 

  42. Kim, O. K., Kim, M. Y., Hong, M. H., Ahn, J. C., & Hwang, B. (2004). Stimulation of asiaticoside accumulation in the whole plant cultures of Centella asiatica (L.) Urban by elicitors. Plant Cell Reports, 23, 339–344.

    Article  CAS  Google Scholar 

  43. Hayashi, H., Huang, P., Takada, S., Obinata, M., Inoue, K., Shibuya, M., et al. (2004). Differential expression of three oxidosqualene cyclase mRNAs in Glycyrrhiza glabra. Biological and Pharmaceutical Bulletin, 27, 1086–1092.

    Article  CAS  Google Scholar 

  44. Broeckling, C. D., Huhman, D. V., Farag, M. A., Smith, G. D. M., Mendes, P., Dixon, R. A., et al. (2005). Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany, 56, 323–336.

    Article  CAS  Google Scholar 

  45. Suzuki, H., Reddy, M. S. S., Naoumkina, M., Aziz, N., May, G. D., Huhman, D. V., et al. (2005). Methyl jasmonate and yeast elicitor induce differential transcriptional and metabolic re-programming in cell suspension cultures of the model legume Medicago truncatula. Planta, 220, 696–707.

    Article  CAS  Google Scholar 

  46. Suzuki, H., Achnine, L., Xu, R., Matsuda, S. P. T., & Dixon, R. A. (2002). A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant Journal, 32, 1033–1048.

    Article  CAS  Google Scholar 

  47. Wiktorowska, E., Dlugosz, M., & Janiszowska, W. (2010). Significant enhancement of oleanolic acid accumulation by biotic elicitors in cell suspension cultures of Calendula officinalis L. Enzyme and Microbial Technology, 46, 14–20.

    Article  CAS  Google Scholar 

  48. Lipinski, M., Scholz, M., Pieper, K., Fischer, R., Pruefer, D., & Muller, K. J. (2009). A squalene epoxidase from Nigella sativa participates in saponin biosynthesis and mediates terbinafine resistance in yeast. Central European Journal of Biology, 4, 163–169.

    Article  CAS  Google Scholar 

  49. Scholz, M., Lipinski, M., Leupold, M., Luftmann, H., Harig, L., Ofirc, R., et al. (2009). Methyl jasmonate induced accumulation of kalopanaxsaponin I in Nigella sativa. Phytochemistry, 70, 517–522.

    Article  CAS  Google Scholar 

  50. Ali, M. B., Yu, K. W., Hahn, E. J., & Paek, K. Y. (2006). Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Reports, 25, 613–620.

    Article  CAS  Google Scholar 

  51. Thanh, N. T., Murthy, H. N., Yu, K. W., Hahn, E. J., & Paek, K. Y. (2005). Methyl jasmonate elicitation enhanced synthesis of ginsenoside by cell suspension cultures of Panax ginseng in 5-l balloon type bubble bioreactors. Applied Microbiology and Biotechnology, 67, 197–201.

    Article  CAS  Google Scholar 

  52. Wang, W., Zhang, Z. Y., & Zhong, J. J. (2005). Enhancement of ginsenoside biosynthesis in high-density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Applied Microbiology and Biotechnology, 67, 752–758.

    Article  CAS  Google Scholar 

  53. Wang, W., Zhao, Z. J., Xu, Y., Qian, X., & Zhong, J. J. (2006). Efficient induction of ginsenoside biosynthesis and alteration of ginsenoside heterogeneity in cell cultures of Panax notoginseng by using chemically synthesized 2-hydroxyethyl jasmonate. Applied Microbiology and Biotechnology, 70, 298–307.

    Article  CAS  Google Scholar 

  54. Bae, K. H., Choi, Y. E., Shin, C. G., Kim, Y. Y., & Kim, Y. S. (2006). Enhanced ginsenoside productivity by combination of ethephon and methyl jasmonate in ginseng (Panax ginseng C.A. Meyer) adventitious root cultures. Biotechnology Letters, 28, 1163–1166.

    Article  CAS  Google Scholar 

  55. Kim, O. K., Kim, M. Y., Huh, S. M., Ahn, J. C., Seong, N. S., & Hwang, B. (2004). Effect of growth regulators on asiaticoside production in whole plant cultures of Centella asiatica (L.) Urban. Journal of Plant Biology, 47, 361–365.

    Article  CAS  Google Scholar 

  56. Fleck, J. D., Schwambach, J., Almeida, M. E., Yendo, A. C. A., Costa, F., Gosmann, G., et al. (2009). Immunoadjuvant saponin production in seedlings and micropropagated plants of Quillaja brasiliensis. In Vitro Cell and Developmental Biology—Plant, 45, 715–720.

    Article  CAS  Google Scholar 

  57. Pasquali, G., Porto, D. D., & Fett-Neto, A. G. (2006). Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. Journal of Bioscience and Bioengineering, 101, 287–296.

    Article  CAS  Google Scholar 

  58. Hernandez-Vazquez, L., Bonfill, M., Moyano, E., Cusido, R. M., Navarro-Ocaña, A., & Palazon, J. (2010). Conversion of α-amyrin into centellosides by plant cell cultures of Centella asiatica. Biotechnology Letters, 32, 315–319.

    Article  CAS  Google Scholar 

  59. Yu, K. W., Murthy, H. N., Hahn, E. J., & Paek, K. Y. (2005). Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochemical Engineering Journal, 23, 53–56.

    Article  CAS  Google Scholar 

  60. Zhou, L., Cao, X., Zhang, R., Peng, Y., Zhao, S., & Wu, J. (2007). Stimulation of saponin production in Panax ginseng hairy roots by two oligosaccharides from Paris polyphylla var yunnanensis. Biotechnology Letters, 29, 631–634.

    Article  CAS  Google Scholar 

  61. Thanh, N. T., Murthy, H. N., Yu, K. W., Jeong, C. S., Hahn, E. J., & Paek, K. Y. (2006). Effect of oxygen supply on cell growth and saponin production in bioreactor cultures of Panax ginseng. Journal of Plant Physiology, 163, 1337–1341.

    Article  CAS  Google Scholar 

  62. Ali, M. B., Hahn, E. J., & Paek, K. Y. (2006). Copper-induced changes in the growth, oxidative metabolism, and saponin production in suspension culture roots of Panax ginseng in bioreactors. Plant Cell Reports, 25, 1122–1132.

    Article  CAS  Google Scholar 

  63. Hu, F. X., & Zhong, J. J. (2008). Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate. Process Biochemistry, 43, 113–118.

    Article  CAS  Google Scholar 

  64. Kim, Y. S., Yeung, E. C., Hahn, E. J., & Paek, K. Y. (2007). Combined effects of phytohormone, indole butyric acid. and methyl jasmonate on root growth and ginsenoside production in adventitious root cultures of Panax ginseng C.A. Meyer. Biotechnology Letters, 29, 1789–1792.

    Article  CAS  Google Scholar 

  65. Dewir, Y. H., Chakrabarty, D., Wu, C. H., Hahn, E. J., Jeon, W. K., Paek, K. Y. 2009. Influences of polyunsaturated fatty acids (PUFAs) on growth and secondary metabolite accumulation in Panax ginseng C.A. Meyer adventitious roots cultured in air-lift bioreactors. South African Journal of Botany. doi:10.016/j.sajb.2009.10.008 .

  66. Paek, K. Y., Murthy, H. N., Hahn, E. J., & Zhong, J. J. (2009). Large scale culture of ginseng adventitious roots for production of ginsenosides. Advances in Biochemical Engineering and Biotechnology, 113, 151–176.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur G. Fett-Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yendo, A.C.A., de Costa, F., Gosmann, G. et al. Production of Plant Bioactive Triterpenoid Saponins: Elicitation Strategies and Target Genes to Improve Yields. Mol Biotechnol 46, 94–104 (2010). https://doi.org/10.1007/s12033-010-9257-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-010-9257-6

Keywords

Navigation