Skip to main content
Log in

Bioinformatics Characterization of Potential New Beta-Glucuronidase from Streptococcus equi subsp. zooepidemicus

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Recently, the gene coding for a new beta-glucuronidase enzyme has been identified and cloned from Streptococcus equi subsp. zooepidemicus. This is another report of a beta-glucuronidase gene cloned from bacterial species. The ORF Finder analysis of a sequenced DNA (EMBL, AJ890474) revealed a presence of 1,785 bp large ORF potentially coding for a 594 aa protein. Three protein families in (Pfam) domains were identified using the Conserved Domain Database (CDD) analysis: Pfam 02836, glycosyl hydrolases family 2, triose phosphate isomerase (TIM) barrel domain; Pfam 02837, glycosyl hydrolases family 2, sugar binding domain; and Pfam 00703, glycosyl hydrolases family 2, immunoglobulin-like beta-sandwich domain. To gain more insight into the enzymatic activity, the domains were used to generate a bootstrapped unrooted distance tree using ClustalX. The calculated distances for two domains, TIM barrel domain, and sugar-binding domain were comparable and exhibited similarity pattern based on function and thus being in accordance with recently published works confirming beta-glucuronidase activity of the enzyme. The calculated distances and the tree arrangement in the case of centrally positioned immonoglobulin-like beta-sandwich domain were somewhat higher when compared to other two domains but clustering with other beta-glucuronidases was rather clear. Nine proteins, including beta-glucuronidases, beta-galactosidase, and mannosidase were selected for multiple alignment and subsequent distance tree creation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wilson, K. J., Hughes, S. G., & Jefferson, R. A. (1992). The Escherichia coli gus operon: Induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria. In S. R. Gallagher (Ed.), GUS protocols: using the GUS gene as a reporter of gene expression. San Diego, CA: Academic Press.

    Google Scholar 

  2. Akao, T. (1999). Purification and characterization of glycyrrhetic acid monoglucuronide beta-d-glucuronidase in Eubacterium sp. GLH. Biological and Pharmaceutical Bulletin, 22, 80–82.

    CAS  Google Scholar 

  3. Russell, W. M., & Klaenhammer, T. R. (2001). Identification and cloning of gusA, encoding a new beta-glucuronidase from Lactobacillus gasseri ADH. Applied and Environmental Microbiology, 67, 1253–1261.

    Article  CAS  Google Scholar 

  4. Jefferson, R. A., Burgess, S. M., & Hirsh, D. (1986). Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proceedings of the National Academy of Sciences of the United States of America, 83, 8447–8451.

    Article  CAS  Google Scholar 

  5. Krahulec, J., & Krahulcová, J. (2007). Characterization of the new β-glucuronidase from Streptococcus equi subsp. zooepidemicus. Applied Microbiology and Biotechnology, 74, 1016–1022.

    Article  CAS  Google Scholar 

  6. McCue, P. M., & Wilson, W. D. (1989). Equine mastitis-a review of 28 cases. Equine Veterinary Journal, 21, 351–353.

    Article  CAS  Google Scholar 

  7. Shulami, S., Gat, O., Sonenshein, A. L., & Shoham, Y. (1999). The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. Journal of Bacteriology, 181, 3695–3704.

    CAS  Google Scholar 

  8. Baudouy, J. R., Portalier, R., & Stoeber, F. (1981). Regulation of hexuronate system genes in Escherichia coli k-12: Multiple regulation of the uxu operon by exuR and uxuR gene products. Journal of Bacteriology, 145, 211–220.

    Google Scholar 

  9. Jacox, R. F. (1953). Streptococcal beta-glucuronidase. Journal of Bacteriology, 65, 700–705.

    CAS  Google Scholar 

  10. Jacox, R. F. (1951). Beta-glucuronidase production by beta hemolytic streptococci. Journal of Clinical Investigation, 30, 652.

    Google Scholar 

  11. McGinnis, S., & Madden, T. L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32, D20–D25. Available at http://www.ncbi.nlm.nih.gov/BLAST/.

  12. Rombel, I. T., Sykes, K. F., Rayner, S., & Johnston, S. A. (2002). ORF-FINDER: A vector for high-throughput gene identification. Gene, 282, 33–41. Available at http://ncbi.nih.gov/gorf/gorf.html.

  13. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882.

    Article  Google Scholar 

  14. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  15. Marchler-Bauer, A., Anderson, J. B., Cherukuri, P. F., DeWeese-Scott, C., Geer, L. Y., Gwadz, M., et al. (2005). CDD: A conserved domain database for protein classification. Nucleic Acids Research, 33, D192–D196. Available at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi.

  16. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., et al. (2004). The Pfam protein families database. Nucleic Acids Research, 32, D138–D141.

  17. Wang, Y., Geer, L. Y., Chappey, C., Kans, J. A., & Bryant, S. H. (2000). Cn3D: Sequence and structure views for Entrez. Trends in Biochemical Sciences, 25, 300–302.

    Article  CAS  Google Scholar 

  18. Perrière, G., & Gouy, M. (1996). WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie, 78, 364–369.

    Article  Google Scholar 

  19. Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280, 309–316.

    CAS  Google Scholar 

  20. Henrissat, B., & Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 293, 781–788.

    CAS  Google Scholar 

  21. Henrissat, B., & Bairoch, A. (1996). Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal, 316, 695–696.

    Google Scholar 

  22. Coutinho, P. M., & Henrissat, B. (1999). Carbohydrate-active enzymes: An integrated database approach. In H. J. Gilbert, G. Davies, B. Henrissat, & B. Svensson (Eds.), Recent advances in carbohydrate bioengineering (pp. 3–12). Cambridge: The Royal Society of Chemistry.

    Google Scholar 

  23. Jacobson, R. H., & Matthews, B. W. (1992). Crystallization of beta-galactosidase from Escherichia coli. Journal of Molecular Biology, 223, 1177–1182.

    Article  CAS  Google Scholar 

  24. Juers, D. H., Jacobson, R. H., Wigley, D., Zhang, X. J., Huber, R. E., Tronrud, D. E., et al. (2000). High resolution refinement of beta-galactosidase in a new crystal form reveals multiple metal-binding sites and provides a structural basis for alpha-complementation. Protein Science, 9, 1685–1699.

    Article  CAS  Google Scholar 

  25. Nagano, N., Porter, C. T., & Thornton, J. M. (2001). The (β/α)8 glycosidases: Sequence and structure analyses suggest distant evolutionary relationships. Protein Engineering, 11, 845–855.

    Google Scholar 

  26. Rigdena, D. J., Jedrzejas, M. J., & de Melloa, L. V. (2003). Identification and analysis of catalytic TIM barrel domains in seven further glycoside hydrolase families. FEBS Letters, 544, 103–111.

    Article  CAS  Google Scholar 

  27. Gebler, J. C., Aebersold, R., & Withers, S. G. (1992). Glu-537, not Glu-461, is the nucleophile in the active site of (lac Z) beta-galactosidase from Escherichia coli. The Journal of Biological Chemistry, 16, 11126–11130.

    Google Scholar 

  28. Cupples, C. G., Miller, J. H., & Huber, R. E. (1990). Determination of the roles of Glu-461 in beta-galactosidase (Escherichia coli) using site-specific mutagenesis. The Journal of Biological Chemistry, 10, 5512–5518.

    Google Scholar 

  29. Skalova, T., Dohnalek, J., Spiwok, V., Lipovova, P., Vondrackova, E., Petrokova, H., et al. (2005). Cold-active beta-galactosidase from Arthrobacter sp. C2–2 forms compact 660 kDa hexamers. Journal of Molecular Biology, 353, 282–294.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Krahulec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krahulec, J., Szemes, T. & Krahulcová, J. Bioinformatics Characterization of Potential New Beta-Glucuronidase from Streptococcus equi subsp. zooepidemicus . Mol Biotechnol 44, 232–241 (2010). https://doi.org/10.1007/s12033-009-9234-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9234-0

Keywords

Navigation