Skip to main content

Advertisement

Log in

Trinucleotide Repeats as Bait for Vectorette PCR: A Tool for Developing Genetic Mapping Markers

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Trinucleotide repeats are common within gene coding regions and could serve as beacons to locate genes. Five of the most common trinucleotide repeats in an Actinidia (kiwifruit) expressed sequence tag (EST) database were found to be (ACC)4, (CAC)4, (CCA)4, (CTC)4, and (TGG)4. These repeats, with or without an artificial 5′-end tail, were tested by vectorette PCR against genomic DNA from Actinidia chinensis. Eighty-nine randomly selected clones showed an average insert size of 383 bp, with a maximum of 1,151 bp and a minimum of 78 bp. Two-thirds of the clones contained the artificial tail attached to the trinucleotide, showing a slight advantage of possessing such a tail during annealing and amplification. The sequences were searched against the Actinidia EST database and GenBank. Of the 89 clones, 33 had a significant hit (expect value < e−15). Twenty-four of those clones matched an Actinidia EST. Twenty-one clones contained one or more simple sequence repeats. This methodology can be applied by conventional cloning and sequencing methods or by high throughput pyrosequencing technologies to develop genetic markers and also for gene mining in species with little or no genetic/genomic resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Li, Y.-C., Korol, A. B., Fahima, T., & Nevo, E. (2004). Microsatellites within genes: Structure, function, and evolution. Molecular Biology and Evolution, 21, 991–1007. doi:10.1093/molbev/msh073.

    Article  CAS  Google Scholar 

  2. Toth, G., Gaspari, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 10, 967–981. doi:10.1101/gr.10.7.967.

    Article  CAS  Google Scholar 

  3. Crowhurst, R., Gleave, A., Macrae, E., Ampomah-Dwamena, C., Atkinson, R., Beuning, L., et al. (2008). Analysis of expressed sequence tags from Actinidia: applications of a cross species EST database for gene discovery in the areas of flavor, health, color and ripening. BMC Genomics, 9, 351. doi:10.1186/1471-2164-9-351.

    Article  Google Scholar 

  4. Morgante, M., Hanafey, M., & Powell, W. (2002). Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics, 30, 194–200. doi:10.1038/ng822.

    Article  CAS  Google Scholar 

  5. Rakoczy-Trojanowska, M., & Bolibok, H. (2004). Characteristics and comparison of three classes of microsatellite-based markers and their application in plants. Cellular & Molecular Biology Letters, 9, 221–238.

    CAS  Google Scholar 

  6. Fraser, L. G., McNeilage, M. A., Tsang, G. K., Harvey, C. F., & De Silva, H. N. (2005). Cross-species amplification of microsatellite loci within the dioecious, polyploid genus Actinidia (Actinidiaceae). Theoretical and Applied Genetics, 112, 149–157. doi:10.1007/s00122-005-0117-x.

    Article  CAS  Google Scholar 

  7. Kuleung, C., Baenziger, P. S., & Dweikat, I. (2004). Transferability of SSR markers among wheat, rye, and triticale. Theoretical and Applied Genetics, 108, 1147–1150. doi:10.1007/s00122-003-1532-5.

    Article  CAS  Google Scholar 

  8. Riley, J., Butler, R., Ogilvie, D., Finniear, R., Jenner, D., Powell, S., et al. (1990). A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Research, 18, 2887–2890. doi:10.1093/nar/18.10.2887.

    Article  CAS  Google Scholar 

  9. Lench, N. J., Norris, A., Bailey, A., Booth, A., & Markham, A. F. (1996). Vectorette PCR isolation of microsatellite repeat sequences using anchored dinucleotide repeat primers. Nucleic Acids Research, 24, 2190–2191. doi:10.1093/nar/24.11.2190.

    Article  CAS  Google Scholar 

  10. Ujino, T., Kawahara, T., Tsumura, Y., Nagamitsu, T., Yoshimaru, H., & Ratnam, W. (1998). Development and polymorphism of simple sequence repeat DNA markers for Shorea curtisii and other Dipterocarpaceae species. Heredity, 81, 422–428. doi:10.1046/j.1365-2540.1998.00423.x.

    Article  CAS  Google Scholar 

  11. Wang, X. W., Trigiano, R. N., Windham, M. T., Devries, R. E., Scheffler, B. E., Rinehart, T. A., et al. (2007). A simple PCR procedure for discovering microsatellites from small insert libraries. Molecular Ecology Notes, 7, 558–561. doi:10.1111/j.1471-8286.2006.01655.x.

    Article  CAS  Google Scholar 

  12. Hayden, M. J., & Sharp, P. J. (2001). Sequence-tagged microsatellite profiling (STMP): A rapid technique for developing SSR markers. Nucleic Acids Research, 29, e43. doi:10.1093/nar/29.8.e43.

    Article  CAS  Google Scholar 

  13. Ko, W.-Y., David, R., & Akashi, H. (2003). Molecular phylogeny of the Drosophila melanogaster species subgroup. Journal of Molecular Evolution, 57, 562–573. doi:10.1007/s00239-003-2510-x.

    Article  CAS  Google Scholar 

  14. Brownie, J., Shawcross, S., Theaker, J., Whitcombe, D., Ferrie, R., Newton, C., et al. (1997). The elimination of primer-dimer accumulation in PCR. Nucleic Acids Research, 25, 3235–3241. doi:10.1093/nar/25.16.3235.

    Article  CAS  Google Scholar 

  15. Sambrook, J., & Russell, D. W. (2001). Molecular cloning, a laboratory manual (3rd ed., Vol. 1). Cold Spring Harbor, NY: Cold Spring Harbor Press.

    Google Scholar 

  16. Rudd, S., Mewes, H.-W., & Mayer, K. F. X. (2003). Sputnik: A database platform for comparative plant genomics. Nucleic Acids Research, 31, 128–132. doi:10.1093/nar/gkg075.

    Article  CAS  Google Scholar 

  17. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402. doi:10.1093/nar/25.17.3389.

    Article  CAS  Google Scholar 

  18. Fraser, L. G., Harvey, C. F., Crowhurst, R. N., & De Silva, H. N. (2004). EST-derived microsatellites from Actinidia species and their potential for mapping. Theoretical and Applied Genetics, 108, 1010–1016. doi:10.1007/s00122-003-1517-4.

    Article  CAS  Google Scholar 

  19. Celton, J., Tustin, D., Chagne, D., & Gardiner, S. (2008). Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genetics Genomics, 5, 93–107. doi:10.1007/s11295-008-017-z.

    Article  Google Scholar 

  20. Temnykh, S., DeClerck, G., Lukashova, A., Lipovich, L., Cartinhour, S., & McCouch, S. (2001). Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research, 11, 1441–1452. doi:10.1101/gr.184001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John F. Mackay, Erik Rikkerink, Paul Datson, and Anne Gunson for critical review of the manuscript, and Ross N. Crowhurst for the bioinformatics support. This work funded by HortResearch internal funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Hilario.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilario, E., Fraser, L.G. & McNeilage, M. Trinucleotide Repeats as Bait for Vectorette PCR: A Tool for Developing Genetic Mapping Markers. Mol Biotechnol 42, 320–326 (2009). https://doi.org/10.1007/s12033-009-9157-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9157-9

Keywords

Navigation