Skip to main content
Log in

Identification of Diploid Stylosanthes seabrana Accessions from Existing Germplasm of S. scabra Utilizing Genome-Specific STS Markers and Flow Cytometry, and Their Molecular Characterization

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Stylosanthes seabrana (Maass and ‘t Mannetje) (2n = 2x = 20), commonly known as Caatinga stylo, is an important tropical perennial forage legume. In nature, it largely co-exist with S. scabra, an allotetraploid (2n = 4x = 40) species, sharing a very high similarity for morphological traits like growth habit, perenniality, fruit shape and presence of small appendage at the base of the pod or loment. This makes the two species difficult to distinguish morphologically, leading to chances of contamination in respective germplasm collections. In present study, 10 S. seabrana accessions were discovered from the existing global germplasm stock of S. scabra represented by 48 diverse collections, utilizing sequence-tagged-sites (STS) genome-specific markers. All the newly identified S. seabrana accessions displayed STS phenotypes of typical diploid species. Earlier reports have conclusively indicated S. seabrana and S. viscosa as two diploid progenitors of allotetraploid S. scabra. With primer pairs SHST3F3/R3, all putative S. seabrana yielded single band of ~550 bp and S. viscosa of ~870 bp whereas both of these bands were observed in allotetraploid S. scabra. Since SHST3F3/R3 primer pairs are known to amplify single or no band with diploid and two bands with tetraploid species, the amplification patterns corroborated that all newly identified S. seabrana lines were diploid in nature. Flow cytometric measurement of DNA content of the species, along with distinguishing morphological traits such as flowering time and seedling vigour, which significantly differ from S. scabra, confirmed all identified lines as S. seabrana. These newly identified lines exhibited high level of similarity among themselves as revealed by RAPD and STS markers (>92% and 80% respectively). Along with the enrichment in genetic resources of Stylosanthes, these newly identified and characterized accessions of S. seabrana can be better exploited in breeding programs targeted to quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Williams, R. J., Reid, R., Schultze-Karft, R., Sousa Costa, N., & Thomas, B. D. (1984). Natural distribution of Stylosanthes. In H. M. Stace & L. A. Edye (Eds.), The biology agronomy of Stylosanthes (pp. 73–101). Sydney, Australia: Academic Press.

    Google Scholar 

  2. Kirkbride, J. H., & de Kirkbride, C. G. (1985). Typification of Stylosanthes (Leguminosae) and its sections. Taxon, 36, 455–458.

    Article  Google Scholar 

  3. Cameron, D. F. (1967). Chromosome number and morphology of some introduced Stylosanthes species. Australian Journal of Agricultural Research, 18, 375–379.

    Article  Google Scholar 

  4. Edye, L. A. (1987). Potential of Stylosanthes for improving tropical grasslands. Outlook Agriculture, 16, 124–130.

    Google Scholar 

  5. Thomas, D. (1984). Global adventures in Stylosanthes. I. South America. In H. M. Stace & L. A. Edye (Eds.), The biology and agronomy of Stylosanthes (pp. 451–460). Sydney, Australia: Academic Press.

    Google Scholar 

  6. Cameron, D. F., Edye, L. A., Chakraborty, S., Manners, J. M., & Liu, C. J. (1996). An integrated program to improve anthracnose resistance in Stylosanthes—a review. Retrieved from http://www.regional.org.au/au/asa/1996/contributed/112cameron.htm.

  7. Chandra, A., Pathak, P. S., & Bhatt, R. K. (2006). Stylo research in India: Prospects and challenges ahead. Current Science, 90, 915–921.

    Google Scholar 

  8. Ramesh, C. R., Bhag Mal, Hazara, C. R., Sukanya, D. H., Ramamurthy, V., & Chakraborty, S. (1997). Status of Stylosanthes development in other countries. III. Stylosanthes development and utilization in India. Tropical Grasslands, 31, 467–475.

    Google Scholar 

  9. Kazan, K., Manners, J. M., & Cameron, D. F. (1993). Genetic variation in agronomically important species of Stylosanthes determined using random amplified polymorphic DNA markers. Theoretical and Applied Genetics, 85, 882–888.

    Article  CAS  Google Scholar 

  10. Curtis, M. D., Nourse, J. P., & Manners, J. M. (1995). Nucleotide sequence of a cationic peroxidase gene from the tropical forage legume Stylosanthes humilis. Plant Physiology, 108, 1303–1304.

    Article  CAS  Google Scholar 

  11. Liu, C. J., & Musial, J. M. (1997). Stylosanthes sp. aff. S. scabra: a putative diploid progenitor of Stylosanthes scabra (Fabaceae). Plant Systematics and Evolution, 208, 99–105.

    Article  Google Scholar 

  12. Ma, Z. Y., Chandra, A., Musial, J. M., & Liu, C. J. (2004). Molecular evidence that Stylosanthes angustifolia is the third putative diploid progenitor of the hexaploid S. erecta (Fabaceae). Plant Systematics and Evolution, 248, 171–176.

    Article  CAS  Google Scholar 

  13. vander Stappen, J., Weltjens, I., Campenhout, S. V., & Volckaert, G. (1999). Genetic relationships among Stylosanthes species as revealed by sequence-tagged site markers. Theoretical and Applied Genetics, 98, 1054–1062.

    Article  Google Scholar 

  14. Liu, C. J., Musial, J. M., & Thomas, B. D. (1999). Genetic relationships among Stylosanthes species revealed by RFLP and STS analyses. Theoretical and Applied Genetics, 99, 1179–1186.

    Article  CAS  Google Scholar 

  15. Mannetje, L’t. (1984). Considerations on the taxonomy of the genus Stylosanthes. In H. M. Stace & L. A. Edye (Eds.), The biology and agronomy of Stylosanthes (pp. 1–21). Sydney, Australia: Academic Press.

    Google Scholar 

  16. Edye, L. A., & Hall, T. J. (1993). Development of new Stylosanthes cultivars for Australia from naturally occurring genotypes. In Proceedings of the XVIIth international grassland congress, Palmerstonpp North, New Zealand (pp. 2159–2161).

  17. Liu, C. J. (1997). Geographical distribution of genetic variation in Stylosanthes scabra revealed by RAPD analysis. Euphytica, 98, 21–27.

    Article  CAS  Google Scholar 

  18. Tewari, S., & Chandra, A. (2008). Genetical assessment of diploid progenitors of S. scabra by isozyme, RAPD and STS markers: A possible strategy for improvement of drought tolerant allo-tetraploid S. scabra species. Euphytica, 162, 39–50.

    Article  CAS  Google Scholar 

  19. Chandra, A., Majumdar, A. B., Suresh, G., Bhatt, R. K., Roy, A. K., & Pathak, P. S. (2004). Evaluation of Stylosanthes germplasm: A multidisciplinary approach to identify lines for wider use in India. Paper in 4th international crop science congress, Brisbane, Australia.

  20. Hall, T. J., & Glatzle, A. (2004). Cattle production from Stylosanthes pastures. In S. Chakraborty (Ed.), High yielding anthracnose—Resistant Stylosanthes for agricultural systems (pp. 51–64). Canberra, Australia: ACIAR.

    Google Scholar 

  21. Phaikaew, C., Ramesh, C. R., Kexian, Y., & Stur, W. (2004). Utilization of Stylosanthes as a forage crop in Asia. In S. Chakraborty (Ed.), High yielding anthracnose—Resistant Stylosanthes for agricultural systems (pp. 153–158). Canberra, Australia: ACIAR.

    Google Scholar 

  22. Matzk, F., Meister, A., & Schubert, I. (2000). An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Plant Journal, 21, 97–108.

    Article  CAS  Google Scholar 

  23. Arumuganathan, K., & Earle, E. D. (1991). Estimation of nuclear DNA content of plants by flow cytometry. Plant Molecular Biology Reporter, 9, 229–241.

    Article  CAS  Google Scholar 

  24. Liu, C. J., & Musial, J. M. (1995). Restriction fragment length polymorphism detected by cDNA and genomic DNA clones in Stylosanthes. Theoretical and Applied Genetics, 91, 1210–1213.

    CAS  Google Scholar 

  25. Liu, C. J., Musial, J. M., & Smith, F. W. (1996). Evidence for a low level of genomic specificity of sequence tagged sites in Stylosanthes. Theoretical and Applied Genetics, 93, 864–868.

    Article  CAS  Google Scholar 

  26. Manners, J. M., McIntyre, C. L., & Nourse, J. P. (1995). Cloning and sequence of a cDNA encoding phenylalanine ammonia-lyase from the tropical forage legume Stylosanthes humilis. Plant Physiology, 108, 1301–1302.

    Article  CAS  Google Scholar 

  27. Reddy, A. S., Ranganathan, B., Haisler, R. M., & Swize, M. A. (1996). A cDNA encoding acyl-CoA-binding protein from cotton. Plant Physiology, 111, 348.

    Article  Google Scholar 

  28. Smith, F. W., Ealing, P. M., Hawkesford, M. J., & Clarkson, D. T. (1995). Plant members of a family of sulfate transporters reveal functional subtypes. Proceedings of the National Academy of Sciences of the United States of America, 92, 9373–9377.

    Article  CAS  Google Scholar 

  29. Rohlf, F. J. (1998). NTSYS-pc: Numerical taxonomy and multivariate analysis system, in Version 2.1. New York: Exeter Software, Applied Biostatistics Setauket.

    Google Scholar 

  30. Yap, I. V., & Nelson, R. J. (1996). Winboot: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. Philippines: IRRI.

    Google Scholar 

  31. Kaushal, P., Agrawal, A., Malaviya, D. R., Siddiqui, S. A., & Roy, A. K. (2009). Ploidy manipulation in guinea grass (Panicum maximum Jacq., Poaceae) utilizing a hybridization-supplemented apomixis-components partitioning approach (HAPA). Plant Breeding (in press).

  32. Dolezel, J., & Bartos, J. (2005). Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany, 95, 99–110.

    Article  CAS  Google Scholar 

  33. Tuna, M., Vogel, K. P., Arumuganathan, K., & Gill, K. S. (2001). DNA content and ploidy determination of bromegrass germplasm accessions by flow cytometry. Crop Science, 41, 1629–1634.

    Article  Google Scholar 

  34. Kaushal, P., Roy, A. K., Khare, A., Malaviya, D. R., Zadoo, S. N., & Choubey, R. N. (2007). Crossability and characterization of interspecific hybrids between sexual Pennisetum glaucum (pearl millet) and a new cytotype (2= 56) of apomictic P. squamulatum. Cytologia, 72, 111–118.

    Article  Google Scholar 

  35. Talent, N., & Dickinson, T. A. (2005). Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): Evolutionary inferences from flow cytometry of nuclear DNA amount. Canadian Journal of Botany, 83, 1268–1304.

    Article  CAS  Google Scholar 

  36. Date, R. A., Edye, L. A., & Liu, C. J. (1996). Stylosanthes sp. aff. scabra—a potential new forage plant for northern Australia. Tropical Grasslands, 30, 133.

    Google Scholar 

  37. Chandra, A., Bhatt, R. K., Majumdar, A. B., Kumar, S., Nagaich, D., & Kumar, K. (2008). Identification, evaluation and molecular characterization of Stylosanthes seabrana—A potential and nutritious range legume having wider applicability in India. In Proceedings of the XXI international Grassland congress and VIII international Rangeland congress, Huhhot, PR China, p. 363.

Download references

Acknowledgements

Authors are thankful to Director, IGFRI and Head, Crop Improvement Division for providing the necessary facilities to carry out the work. The seed materials received under ACIAR-stylo project and ILRI, Ethiopia through NBPGR are duly acknowledged. Financial support received to carry out the part of the work reported from ACIAR, Australia under the project (CS1/95/129) is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaresh Chandra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, A., Kaushal, P. Identification of Diploid Stylosanthes seabrana Accessions from Existing Germplasm of S. scabra Utilizing Genome-Specific STS Markers and Flow Cytometry, and Their Molecular Characterization. Mol Biotechnol 42, 282–291 (2009). https://doi.org/10.1007/s12033-009-9154-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9154-z

Keywords

Navigation