Skip to main content
Log in

RNA Silencing Mediated by Direct Repeats in Maize: A Potential Tool for Functional Genomics

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

It has been shown in tobacco and Arabidopsis that transgenes with multiple direct repeats induce RNA silencing at high frequency. In this study, we tried to establish a direct repeat-induced RNA silencing system in maize and evaluate whether it can be developed as a high throughput tool for functional genomics. Our results showed that the construct phC4, which carries four direct repeats of a chloramphenicol acetyl-transferase (CAT) gene, was able to induce silencing of itself with high efficiency in maize. Using a transient expression system, we further demonstrated that construct phC3G with a β-glucuronidase (GUS) gene located downstream of three direct repeats of CAT gene silenced not only itself in maize calli but also an “endogenous” GUS gene, which was stably expressed in maize calli. Most importantly, when constructs with the maize iojap (ij) gene inserted in either sense or antisense orientation into the downstream of four direct repeats of CAT gene were transformed into maize plants, co-suppression of endogenous and transgenic ij genes was detected in majority of transgenic maize plants. Our co-suppression results suggest that with improvements, this new approach has the potential to become an efficient research tool for high throughput functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hayafune, M., Miyano-Kurosaki, N., Takaku, H., & Park, W. S. (2006). Silencing of HIV-1 gene expression by siRNAs in transduced cells. Nucleosides Nucleotides Nucleic Acids, 25, 795–799.

    Article  CAS  Google Scholar 

  2. Mahmood-ur-Rahman, Ali, I., Husnain, T., & Riazuddin, S. (2008). RNA interference: the story of gene silencing in plants and humans. Biotechnology Advances, 26, 202–209.

    Article  CAS  Google Scholar 

  3. Dafny-Yelin, M., Chung, S. M., Frankman, E. L., & Tzfira, T. (2007). pSAT RNA interference vectors: a modular series for multiple gene down-regulation in plants. Plant Physiology, 145, 1272–1281.

    Article  CAS  Google Scholar 

  4. Kim, N. S., Kim, T. G., Kim, O. H., Ko, E. M., Jang, Y. S., Jung, E. S., et al. (2008). Improvement of recombinant hGM-CSF production by suppression of cysteine proteinase gene expression using RNA interference in a transgenic rice culture. Plant Molecular Biology, 68, 263–275.

    Article  CAS  Google Scholar 

  5. Holzberg, S., Brosio, P., Gross, C., & Pogue, G. P. (2002). Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal: For Cell and Molecular Biology, 30, 315–327.

    CAS  Google Scholar 

  6. Kumpatla, S. P., Teng, W., Buchholz, W. G., & Hall, T. C. (1997). Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiology, 115, 361–373.

    Article  CAS  Google Scholar 

  7. Schweizer, P., Pokorny, J., Schulze-Lefert, P., & Dudler, R. (2000). Double-stranded RNA interferes with gene function at the single cell level in cereals. The Plant Journal: For Cell and Molecular Biology, 24, 895–903.

    CAS  Google Scholar 

  8. Wang, M. B., & Waterhouse, P. M. (2000). High-efficiency silencing of a β-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Molecular Biology, 43, 67–82.

    Article  CAS  Google Scholar 

  9. McGinnis, K., Chandler, V., Cone, K., Kaeppler, H., Kaeppler, S., Kerschen, A., et al. (2005). Transgene-induced RNA interference as a tool for plant functional genomics. Methods in Enzymology, 392, 1–24.

    Article  CAS  Google Scholar 

  10. McGinnis, K., Murphy, N., Carlson, A. R., Akula, A., Akula, C., Basinger, H., et al. (2007). Assessing the efficiency of RNA interference for maize functional genomics. Plant Physiology, 143, 1441–1451.

    Article  CAS  Google Scholar 

  11. Segal, G., Song, R., & Messing, J. (2003). A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics, 165, 387–397.

    CAS  Google Scholar 

  12. Della Vedova, C. B., Lorbiecke, R., Kirsch, H., Schulte, M. B., Scheets, K., Borchert, L. M., et al. (2005). The dominant inhibitory chalcone synthase allele C2-Idf (inhibitor diffuse) from Zea mays (L.) acts via an endogenous RNA silencing mechanism. Genetics, 170, 1989–2002.

    Article  CAS  Google Scholar 

  13. Haberer, G., Young, S., Bharti, A. K., Gundlach, H., Raymond, C., Fuks, G., et al. (2005). Structure and architecture of the maize genome. Plant Physiology, 139, 1612–1624.

    Article  CAS  Google Scholar 

  14. Messing, J., Bharti, A. K., Karlowski, W. M., Gundlach, H., Kim, H. R., Yu, Y., et al. (2004). Sequence composition and genome organization of maize. Proceedings of the National Academy of Sciences of the United States of America, 101, 14349–14354.

    Article  CAS  Google Scholar 

  15. Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M., & Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature, 408, 325–330.

    Article  CAS  Google Scholar 

  16. Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S. J., Copley, R. R., et al. (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 408, 331–336.

    Article  CAS  Google Scholar 

  17. Ma, C., & Mitra, A. (2002). Intrinsic direct repeats generate consistent posttranscriptional gene silencing in tobacco. The Plant Journal: For Cell and Molecular Biology, 31, 37–49.

    CAS  Google Scholar 

  18. Han, C., Coe, E. H., & Martienssen, R. A. (1992). Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO Journal, 11, 4037–4046.

    CAS  Google Scholar 

  19. Yu, J. J., Peng, P., Zhang, X. J., Zhao, Q., Zhu, D. Y., Sun, X. H., et al. (2004). Seed-specific expression of a lysine rich protein sb401 gene significantly increases both lysine and total protein content in maize seeds. Molecular Breeding, 14, 1–7.

    Article  CAS  Google Scholar 

  20. Wan, Y. C., Widholm, J. M., & Lemaux, P. G. (1995). Type I callus as a bombardment target for generating fertile transgenic maize (Zea mays L). Planta, 196, 7–14.

    Article  CAS  Google Scholar 

  21. Stewart, C. N., & Via, L. E. (1993). A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR application. Biotchniques, 14, 748–750.

    CAS  Google Scholar 

  22. Church, M., & Gilbert, W. (1984). Genomic sequencing. Proceedings of the National Academy of Sciences of the United States of America, 81, 1991–1995.

    Article  CAS  Google Scholar 

  23. Yu, S. M., Lee, Y. C., Fang, S. C., Chan, M. T., Hwa, S. F., & Liu, L. F. (1996). Sugars act as signal molecules and osmotica to regulate the expression of α-amylase genes and metabolic activities in germinating cereal grains. Plant Molecular Biology, 30, 1277–1289.

    Article  CAS  Google Scholar 

  24. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). New York: Cold Spring Harbor Press.

    Google Scholar 

  25. Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  26. Ryan, M. D., King, A. M. Q., & Thomasm, G. P. (1991). Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. The Journal of General Virology, 72, 2727–2732.

    Article  CAS  Google Scholar 

  27. Donnelly, M. L. L., Hughes, L. E., Luke, G., Mendoza, H., ten Dam, E., Gani, D., et al. (2001). The ‘cleavage’ activity of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring ‘2A-like’ sequences. The Journal of General Virology, 82, 1027–1041.

    CAS  Google Scholar 

  28. Mattion, N. M., Harnish, E. C., Crowley, J. C., & Reilly, P. A. (1996). Foot-and-mouth disease virus 2A protease mediated cleavage in attenuated sabin 3 poliovirus vectors engineered for delivery of foreign antigenes. Journal of Virology, 70, 8124–8127.

    CAS  Google Scholar 

  29. Ryan, M. D., & Drew, J. (1994). Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO Journal, 13, 928–933.

    CAS  Google Scholar 

  30. Halpin, G., Cooke, S. E., Barakate, A., El Amrani, A., & Ryan, M. D. (1999). Self-processing 2A-polyproteins—A system for co-ordinate expression of multiple proteins in transgenic plants. The Plant Journal: For Cell and Molecular Biology, 17, 453–459.

    CAS  Google Scholar 

  31. Santa Cruz, S., Chapman, S., Roberts, I. M., Prior, D. A. M., & Oparka, K. J. (1996). Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proceedings of the National Academy of Sciences of the United States of America, 93, 6286–6290.

    Article  CAS  Google Scholar 

  32. Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293–296.

    Article  CAS  Google Scholar 

  33. Hamilton, A. J., & Baulcombe, D. C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 286, 950–952.

    Article  CAS  Google Scholar 

  34. Byrne, M., & Taylor, W. C. (1996). Analysis of mutator-induced mutations in the iojap gene of maize. Molecular and General Genetics, 252, 216–220.

    CAS  Google Scholar 

  35. Coe, E. H., Thompson, D. L., & Walbot, V. (1988). Phenotypes mediated by the iojap genotype in maize. American Journal of Botany, 75, 634–644.

    Article  Google Scholar 

  36. Shumway, L. K., & Weier, T. E. (1976). The chloroplast structure of iojap maize. American Journal of Botany, 54, 773–780.

    Article  Google Scholar 

  37. Thompson, D. L., Walbot, V., & Coe, E. H. (1983). Plastid development in iojap-and chloroplast mutator-affected maize plants. American Journal of Botany, 70, 940–950.

    Article  Google Scholar 

  38. Smith, N. A., Singh, S. P., Wang, M. B., Stoutjesdijk, P. A., Green, A. G., & Waterhouse, P. M. (2000). Gene expression: Total silencing by intron spliced hairpin RNAs. Nature, 407, 319–320.

    Article  CAS  Google Scholar 

  39. Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M. B., Rouse, D. T., Liu, Q., et al. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal: For Cell and Molecular Biology, 27, 581–590.

    CAS  Google Scholar 

  40. Chang, C. F., & Meyerowitz, E. M. (2000). Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 97, 4985–4990.

    Article  Google Scholar 

  41. Beclin, C., Boutet, S., Waterhouse, P., & Vaucheret, H. (2002). A branched pathway for transgene-induced RNA silencing in plants. Current Biology, 12, 684–688.

    Article  CAS  Google Scholar 

  42. Stam, M., de Bruin, R., van Blokland, R., van der Horn, R. A. L., Mol, J. N. M., & Kooter, J. M. (2000). Distinct features of posttranscriptional gene silencing by antisense transgenes in single copy and inverted T-DNA repeat loci. The Plant Journal: For Cell and Molecular Biology, 21, 27–42.

    CAS  Google Scholar 

  43. Hamilton, A. J., Brown, S., Yuanhai, H., Ishizuka, M., Solis, A. G., & Grierson, D. (1998). A transgene with repeated DNA cause high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. The Plant Journal: For Cell and Molecular Biology, 15, 737–746.

    CAS  Google Scholar 

  44. Serio, F. D., Schob, H., Iglesias, A., Tarina, C., Bouldoires, E., & Meins, F. J. (2001). Sense- and antisense-mediated gene silencing in tobacco is inhibited by the same viral suppressors and is associated with accumulation of small RNAs. Proceedings of the National Academy of Sciences of the United States of America, 98, 6506–6510.

    Article  Google Scholar 

  45. Sijen, T., Wellink, J., Hiriart, J. B., & van Kammen, A. (1996). RNA mediated virus resistance: Role of repeated transgenes and delineation of target regions. Plant Cell, 8, 2277–2294.

    Article  CAS  Google Scholar 

  46. Yan, H., Chretien, R., Ye, J., & Rommens, C. M. (2006). New construct approaches for efficient gene silencing in plants. Plant Physiology, 141, 1508–1518.

    Article  CAS  Google Scholar 

  47. Hobbs, S. L., Warkentin, T. D., & DeLong, C. M. (1993). Transgene copy number can be positively or negatively associated with transgene expression. Plant Molecular Biology, 21, 17–26.

    Article  CAS  Google Scholar 

  48. Tang, W., Newton, R. J., & Weidner, D. A. (2007). Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. Journal of Experimental Botany, 58, 545–554.

    Article  CAS  Google Scholar 

  49. Palauqui, J. C., Elmayan, T., Pollien, J. M., & Vaucheret, H. (1997). Systemic acquired silencing: transgenespecific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO Journal, 16, 4738–4745.

    Article  CAS  Google Scholar 

  50. Voinnet, O., & Baulcombe, D. C. (1997). Systemic signalling in gene silencing. Nature, 389, 553.

    Article  CAS  Google Scholar 

  51. Kehr, J., & Buhtz, A. (2007). Long distance transport and movement of RNA through the phloem. Journal of Experimental Botany, 59, 85–92.

    Article  Google Scholar 

  52. Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P., & Sharp, P. A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes and Development, 13, 3191–3197.

    Article  CAS  Google Scholar 

  53. Klahre, U., Cre′ te′, P., Leuenberger, S. A., Iglesias, V. A., & Meins, F. J. (2002). High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proceedings of the National Academy of Sciences of the United States of America, 99, 11981–11986.

    Article  CAS  Google Scholar 

  54. Martienssen, R. A. (2006). Maintenance of heterochromatin by RNA interference of tandem repeats. Nature Genetics, 35, 213–214.

    Article  Google Scholar 

  55. Fuhrmann, M., Stahlberg, A., Govorunova, E., Rank, S., & Hegemann, P. (2001). The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. Journal of Cell Science, 114, 3857–3863.

    CAS  Google Scholar 

  56. Kerschen, A., Napoli, C. A., Jorgensen, R. A., & Muller, A. E. (2004). Effectiveness of RNA interference in transgenic plants. FEBS Letters, 566, 223–228.

    Article  CAS  Google Scholar 

  57. Liu, R., Vitte, C., Ma, J., Mahama, A. A., Dhliwayo, T., Lee, M., et al. (2007). A GeneTrek analysis of the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 104, 11844–11849.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Qifeng Xu, China Agricultural University, for providing maize inbred lines; Dr. Amitava Mitra, University of Nebraska-Lincoln, for providing the pC4 and pC3G constructs; Dr. Chengxia Li and Dr. Xiangbai Dong, University of California and the Chinese Academy of Sciences, respectively, for critical reading of this manuscript. This research was supported by program for “New Century Excellent Talents in University, NCET-05-0129”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chonglie Ma or Jingjuan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, X., Zhu, D., Zhao, Q. et al. RNA Silencing Mediated by Direct Repeats in Maize: A Potential Tool for Functional Genomics. Mol Biotechnol 41, 213–223 (2009). https://doi.org/10.1007/s12033-008-9124-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9124-x

Keywords

Navigation