Skip to main content

Advertisement

Log in

Gene Manipulation of a Heavy Metal Hyperaccumulator Species Thlaspi caerulescens L. via Agrobacterium-mediated Transformation

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Thlaspi caerulescens L. is well known as a Zn/Cd hyperaccumulator. The genetic manipulation of T. caerulescens through transgenic technology can modify plant features for use in phytoremediation. Here, we describe the efficient transformation of T. caerulescens using Agrobacterium tumefaciens strain EHA105 harboring a binary vector pBI121 with the nptII gene as a selectable marker, the gus gene as a reporter and a foreign catalase gene. Based on the optimal concentration of growth regulators, the shoot cluster regeneration system via callus phase provided the basis of the genetic transformation in T. caerulescens. The key variables in transformation were examined, such as co-cultivation period and bacterial suspension density. Optimizing factors for T-DNA delivery resulted in kanamycin-resistant transgenic shoots with transformation efficiency more than 20%, proven by histochemical GUS assay and PCR analysis. Southern analysis of nptII and RT-PCR of catalase gene demonstrated that the foreign genes were integrated in the genome of transformed plantlets. Moreover, the activity of catalase enzyme in transgenic plants was obviously higher than in wild-type plants. This method offers new prospects for the genetic engineering of this important hyperaccumulator species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

KT:

Kinetin

BA:

Benzylaminopurine

NAA:

α-Naphthaleneacetic acid

AS:

Acetosyringone

LH:

Lactalbumin hydrolysate

GA3 :

Gibberellin

BCM:

Basic culture medium

RCM:

Regeneration culture medium

PCM:

Pre-culture medium

CCM:

Co-cultivation medium

SCM-Cb:

Selection culture medium with carbenicillin

SCM-Km:

Selection culture medium with carbenicillin and kanamycin

SCM-GA3 :

Selection culture medium with GA3

RM-Km:

Rooting medium with kanamycin

References

  1. Assunção, G. L. A., Schat, H., & Aarts, M. G. M. (2003). Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytologist, 159, 351–360.

    Article  CAS  Google Scholar 

  2. Alkorta, I., Hernández-Allica, J., Becerril, J. M., Amezaga, I., Albizu, I., & Garbisu, C. (2004). Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Reviews in Environmental Science and Bio/technology, 3, 71–90.

    Article  CAS  Google Scholar 

  3. Garbisu, C., & Alkorta, I. (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Bioresource Technology, 77, 229–236.

    Article  CAS  Google Scholar 

  4. Weber, O., Scholz, R. W., Bühlamann, R., & Crasmüch, D. (2001). Risk perception of heavy metal soil contamination and attitudes toward decontamination strategies. Risk Analysis, 21, 967–977.

    Article  CAS  Google Scholar 

  5. Datta, R., & Sarkar, D. (2004). Effective integration of soil chemistry and plant molecular biology in phytoremediation of metals: An overview. Environmental Geosciences, 11(2), 53–63.

    Article  Google Scholar 

  6. Krämer, U. (2005). Phytoremediation: novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16, 133–141.

    Article  CAS  Google Scholar 

  7. Flowers, T. J., & Yeo, A. R. (1995). Breeding for salinity resistance in crop plants: Where next? Australian Journal of Plant Physiology, 22, 875–884.

    Article  Google Scholar 

  8. Garbisu, C., Hernández-Allica, J., Barrutia, O., Alkorta, I., & Becerril, J. M. (2002). Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Reviews on Environmental Health, 17, 75–90.

    Google Scholar 

  9. Azpilicueta, C. E., Benavides, M. P., Tomaro, M. L., & Gallego, S. M. (2007). Mechanism of CATA3 induction by cadmium in sunflower leaves. Plant Physiology and Biochemistry, 45, 589–595.

    Article  CAS  Google Scholar 

  10. Lee, M. Y., & Shin, H. W. (2003). Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. Journal of Applied Phycology, 15, 13–19.

    Article  CAS  Google Scholar 

  11. Gelvin, S. B. (2003). Agrobacterium-mediated plant transformation: The biology behind the “Gene-Jockeying” tool. Microbiology and Molecular Biology Review, 67(1), 16–37.

    Article  CAS  Google Scholar 

  12. Peer, W. A., Mamoudian, M., Lahner, B., Reeves, R. D., Murphy, A. S., & Salt, D. E. (2003). Identifying model metal hyperaccumulating plants: Germplasm analysis of 20 Brassicaceae accessions from a wide geographical area. New Phytologist, 159, 421–430.

    Article  CAS  Google Scholar 

  13. Lang, M., Zhang, Y., & Chai, T. (2005). Identification of genes up-regulated in response to Cd exposure in Brassica juncea L. Gene, 363, 151–158.

    Article  CAS  Google Scholar 

  14. Hood, E. E., Gevin, S. B., Melchers, L. S., & Hoekema, A. (1993). New Agrobacterium vectors for plant transformation. Transgenic Research, 2, 208–218.

    Article  CAS  Google Scholar 

  15. Zhang, Y. X., Xu, J., Han, L., Wei, W., Guan, Z. Q., Cong, L., & Chai, T. Y. (2006). Efficient shoot regeneration and Agrobacterium-mediated transformation of Brassica juncea. Plant Molecular Biology Reporter, 24, 255a–255i.

    Article  Google Scholar 

  16. Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6(13), 3901–3907.

    CAS  Google Scholar 

  17. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.

    Google Scholar 

  18. Bradford, M. M. (1976). A rapid sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-Dye Binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.

    Article  CAS  Google Scholar 

  20. Plaza, S., Tearall, K. L., Zhao, F. J., Buchner, P., McGrath, S. P., & Hawkesford, M. J. (2007). Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 58(7), 1717–1728.

    Article  CAS  Google Scholar 

  21. Colman, A. (1990). Antisense strategies in cell and developmental biology. Journal of Cell Science, 97, 399–409.

    CAS  Google Scholar 

  22. Trigiano, R. N., & Gray, D. J. (1999). Plant tissue culture concepts and laboratory exercises (2nd ed.). London: CRC press.

    Google Scholar 

  23. Ahmadabadi, M., Ruf, S., & Bock, R. (2007). A leaf-based regeneration and transformation system for maize (Zea mays L.). Transgenic Research, 16, 437–448.

    Article  CAS  Google Scholar 

  24. Chaudhury, D., Madanpotra, S., Jaiwal, R., Saini, R., Ananda Kumar, P., & Jaiwal, P. K. (2007). Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny. Plant Science, 172, 692–700.

    Article  CAS  Google Scholar 

  25. Saini, R., & Jaiwal, P. K. (2005). Efficient transformation of a recalcitrant grain legume Vigna mungo L. Hepper via Agrobacterium-mediated gene transfer into shoot apical meristem cultures. Plant Cell Reports, 24, 164–171.

    Article  CAS  Google Scholar 

  26. Shiv Prakash, N., Pental, D., Bhalla-Sarin, N. (1997). Regeneration of pigeonpea (Cajanus cajan) from cotyledonary node via multiple shoot formation. Plant Cell Reports, 13, 623–627.

    Google Scholar 

  27. Santalla, M., Power, J. B., Davey, M. R. (1998). Efficient in vitro shoot regeneration responses of Phaseolus vulgaris and P. coccineus. Euphytica, 102, 195–202.

    Article  Google Scholar 

  28. Al-Ramamneh, E. A., Sriskandarajah, S., & Serek, M. (2006). Agrobaterium tumefaciens-mediated transformation of Rhipsalidopsis gaertneri. Plant Cell Reports, 25, 1219–1225.

    Article  CAS  Google Scholar 

  29. Kumria, R., Waie, B., & Rajam, M. V. (2001). Plant regeneration from transformed embryogenic callus of an elite indica rice via Agrobacterium. Plant Cell Tissue Organ Culture, 67, 63–71.

    Article  CAS  Google Scholar 

  30. Romero-Puertas, M. C., Rodríguez-Serrano, M., Corpas, F. J., Gómez, M., Delrío, L. A., & Sandalio, L. M. (2004). Cadmium-induced subcellular accumulation of O •−2 and H2O2 in pea leaves. Plant Cell & Environment, 27, 1122–1134.

    Article  CAS  Google Scholar 

  31. Tseng, M. J., Liu, C. W., & Yiu, J. C. (2007). Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physiology and Biochemistry, 45, 822–833.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National High Technology Planning Program of China (Grant nos. 2006AA10Z407 and 2007AA021404) and China National Natural Sciences Foundation (Grant no. 30570146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Yao Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Z.Q., Chai, T.Y., Zhang, Y.X. et al. Gene Manipulation of a Heavy Metal Hyperaccumulator Species Thlaspi caerulescens L. via Agrobacterium-mediated Transformation. Mol Biotechnol 40, 77–86 (2008). https://doi.org/10.1007/s12033-008-9065-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9065-4

Keywords

Navigation