Skip to main content
Log in

Ethanolic extract of Euphorbia royleana Boiss. reduces metastasis of breast cancer cells and inhibits tumor progression in vivo

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Metastasis is the most devastating attribute of breast cancer (BC) that leads to high mortality. It is a complex process of tumor cell migration, invasion, and angiogenesis. In this study, we evaluated the effect of ERA on BC metastasis and BC progression in vivo. The transwell invasion/migration and wound healing assays showed that ERA treatment significantly reduced the invasion and migration of BC cell lines. The expression of mesenchymal (E-cadherin and N-cadherin), matrix metalloproteinases (MMP2, MMP9), and stemness markers (Oct3) were down-regulated by ERA. Furthermore, ERA down-regulated angiogenic chemokines (CXCL1/2/3, CXCL5, and CXCL12) expression in the highly metastatic MDA-MB-231 cell line. The clonogenic survival of BC cells was also reduced by ERA treatment. Strikingly, ERA prevented DMBA-induced tumor growth in Swiss albino mice as depicted by a high animal survival rate (84%) in the ERA group and histopathological analysis. Conclusively, this study revealed that ERA possesses anti-metastatic potential and also reduces the growth of BC in vivo. Moreover, the GC–MS data revealed the presence of biologically active compounds (Lupeol, Phytol, phytosterol) and some rare (9, 19-Cyclolanost) phyto metabolites in ERA extract. However, further studies are suggestive to identify and isolate the therapeutic agents from ERA to combat BC and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data obtained during this study are included in the manuscript.

References

  1. Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2021;124:13–26. https://doi.org/10.1038/s41416-020-01161-4.

    Article  PubMed  Google Scholar 

  2. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85.

    Article  PubMed  Google Scholar 

  3. Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. In.: Elsevier; 2020, 14–27.

  4. Serala K, Steenkamp P, Mampuru L, Prince S, Poopedi K, Mbazima V. In vitro antimetastatic activity of Momordica balsamina crude acetone extract in HT-29 human colon cancer cells. Environ Toxicol. 2021;36:2196–205.

    Article  CAS  PubMed  Google Scholar 

  5. Mrozik KM, Blaschuk OW, Cheong CM, Zannettino ACW, Vandyke K. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer. 2018;18:1–16.

    Article  Google Scholar 

  6. Palacios-Arreola MI, Nava-Castro KE, Castro JI, García-Zepeda E, Carrero JC, Morales-Montor J. The role of chemokines in breast cancer pathology and its possible use as therapeutic targets. J Immunol Res. 2014;2014.

  7. Choi J, Ahn SS, Lim Y, Lee YH, Shin SY. Inhibitory effect of Alisma canaliculatum ethanolic extract on NF-κB-dependent CXCR3 and CXCL10 expression in TNFα-exposed MDA-MB-231 breast cancer cells. Int J Mol Sci. 2018;19:2607.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Luo K-W, Yue GG-L, Ko C-H, Gao S, Lee JK-M, Li G, et al. The combined use of Camellia sinensis and metronomic zoledronate in 4T1 mouse carcinoma against tumor growth and metastasis. Oncol Rep. 2015;34:477–87.

  9. Lee MM-L, Chan BD, Wong W-Y, Qu Z, Chan M-S, Leung T-W, et al. Anti-cancer activity of Centipeda minima extract in triple negative breast cancer via inhibition of AKT, NF-κB, and STAT3 signaling pathways. Front Oncol. 2020;10:491.

  10. Nho KJ, Chun JM, Kim DS, Kim HK. Ampelopsis japonica ethanol extract suppresses migration and invasion in human MDA-MB-231 breast cancer cells. Mol Med Report. 2015;11:3722–8.

    Article  CAS  Google Scholar 

  11. Lai Y-J, Tai C-J, Wang C-W, Choong C-Y, Lee B-H, Shi Y-C, et al. Anti-cancer activity of Solanum nigrum (AESN) through suppression of mitochondrial function and epithelial-mesenchymal transition (EMT) in breast cancer cells. Molecules. 2016;21:553.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yang B, Wang N, Wang S, Li X, Zheng Y, Li M, et al. Network-pharmacology-based identification of caveolin-1 as a key target of Oldenlandia diffusa to suppress breast cancer metastasis. Biomed Pharmacother. 2019;112: 108607.

    Article  CAS  PubMed  Google Scholar 

  13. Wrighton KC, Thrash JC, Melnyk RA, Bigi JP, Byrne-Bailey KG, Remis JP, et al. Evidence for direct electron transfer by a Gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol. 2011;77:7633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park J, Jeong D, Song M, Kim B. Recent advances in anti-metastatic approaches of herbal medicines in 5 major cancers: from traditional medicine to modern drug discovery. Antioxidants (Basel). 2021;10:527. https://doi.org/10.3390/antiox10040527.

    Article  CAS  PubMed  Google Scholar 

  15. Mwine TJ, Damme VP. Why do Euphorbiaceae tick as medicinal plants? A review of Euphorbiaceae family and its medicinal features. 2011.

  16. Ashraf A, Sarfraz RA, Rashid MA, Shahid M. Antioxidant, antimicrobial, antitumor, and cytotoxic activities of an important medicinal plant (Euphorbia royleana) from Pakistan. JFDA. 2015;23:109–15.

    PubMed  Google Scholar 

  17. Ebrahim HY, Osman SA, Haffez HR, Hassan ZA. In-vitro screening of some plant extracts for their potential anticancer activity. Afr J Tradit Complement Altern Med. 2020;17:1–8.

    Article  CAS  Google Scholar 

  18. Gull S, Farooq K, Tayyeb A, Arshad MI, Shahzad N. Ethanolic extracts of Pakistani euphorbiaceous plants induce apoptosis in breast cancer cells through induction of DNA damage and caspase-dependent pathway. Gene. 2022;824: 146401.

    Article  CAS  PubMed  Google Scholar 

  19. Aftab S, Khalid Z, Shakoori AR. Repression of Cell-to-Matrix Adhesion by Metformin Chloride Supports Its Anti-Metastatic Potential in an In Vitro Study on Metastatic and Non-Metastatic Cancer Cells. Critical Reviews™ in Eukaryotic Gene Expression. 2022;32.

  20. Maskey N, Li D, Xu H, Song H, Wu C, Hua K, et al. MicroRNA-340 inhibits invasion and metastasis by downregulating ROCK1 in breast cancer cells. Oncol Lett. 2017;14:2261–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naz H, Gull S, Bashir Q, Rashid N, Shahzad N. Thermococcus kodakarensis-derived L-asparaginase: a candidate for the treatment of glioblastoma. Biologia. 2021;76:1305–14.

    Article  CAS  Google Scholar 

  22. Perveen S, Ashfaq H, Ambreen S, Ashfaq I, Kanwal Z, Tayyeb A. Methanolic extract of Citrullus colocynthis suppresses growth and proliferation of breast cancer cells through regulation of cell cycle. Saudi J Biol Sci. 2021;28:879–86.

    Article  CAS  PubMed  Google Scholar 

  23. Srinivasan A, Thangavel C, Liu Y, Shoyele S, Den RB, Selvakumar P, et al. Quercetin regulates β-catenin signaling and reduces the migration of triple negative breast cancer. Mol Carcinog. 2016;55:743–56.

    Article  CAS  PubMed  Google Scholar 

  24. Toulza F, Eliaou JF, Pinet V. Breast tumor cell soluble factors induce monocytes to produce angiogenic but not angiostatic CXC chemokines. Int J Cancer. 2005;115:429–36.

    Article  CAS  PubMed  Google Scholar 

  25. SenGupta S, Hein LE, Xu Y, Zhang J, Konwerski JR, Li Y, et al. Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Front Immunol. 2021;12: 659996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ling G-Q, Chen D-B, Wang B-Q, Zhang L-S. Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncol Lett. 2012;4:1264–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rashed K. Beta-Sitosterol Medicinal Properties: A Review Article. Int J Sci Inventions Today, IJSIT, 2020, 9 (4). 2020:208–12.

  28. Chen W, Zhou S, Mao L, Zhang H, Sun D, Zhang J, et al. Crosstalk between TGF-β signaling and miRNAs in breast cancer metastasis. Tumor Biol. 2016;37:10011–9.

    Article  CAS  Google Scholar 

  29. Morini M, Mottolese M, Ferrari N, Ghiorzo F, Buglioni S, Mortarini R, et al. The α3β1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (mmp-9) activity. Int J Cancer. 2000;87:336–42.

    Article  CAS  PubMed  Google Scholar 

  30. Al-Zharani M, Nasr FA, Abutaha N, Alqahtani AS, Noman OM, Mubarak M, et al. Apoptotic induction and anti-migratory effects of Rhazya stricta fruit extracts on a human breast cancer cell line. Molecules. 2019;24:3968.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee HS, Na MH, Kim WK. α-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells. Nutr Res. 2010;30:403–9.

    Article  CAS  PubMed  Google Scholar 

  32. Gallardo M, Calaf GM. Curcumin inhibits invasive capabilities through epithelial mesenchymal transition in breast cancer cell lines. Int J Oncol. 2016;49:1019–27.

    Article  CAS  PubMed  Google Scholar 

  33. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004;4:540–50.

    Article  CAS  PubMed  Google Scholar 

  34. Chen E, Qin X, Peng K, Xu X, Li W, Cheng X, et al. Identification of potential therapeutic targets among CXC chemokines in breast tumor microenvironment using integrative bioinformatics analysis. Cell Physiol Biochem. 2018;45:1731–46.

    Article  CAS  PubMed  Google Scholar 

  35. Bachmeier BE, Mohrenz IV, Mirisola V, Schleicher E, Romeo F, Höhneke C, et al. Curcumin downregulates the inflammatory cytokines CXCL1 and-2 in breast cancer cells via NFκB. Carcinogenesis. 2008;29:779–89.

    Article  CAS  PubMed  Google Scholar 

  36. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature. 2005;436:518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu M, Xu X, Lu H, Lu Z, Xu B, Tan C, et al. Evaluation of anti-tumor and chemoresistance-lowering effects of pectolinarigenin from Cirsium japonicum Fisch ex DC in breast cancer. Trop J Pharm Res. 2016;15:547–53.

    Article  CAS  Google Scholar 

  38. Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, et al. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem cells. 2009;27:993–1005.

    Article  CAS  PubMed  Google Scholar 

  39. Alessandra-Perini J, Perini JA, Rodrigues-Baptista KC, de Moura RS, Junior AP, Dos Santos TA, et al. Euterpe oleracea extract inhibits tumorigenesis effect of the chemical carcinogen DMBA in breast experimental cancer. BMC Complement Altern Med. 2018;18:1–11.

    Article  Google Scholar 

  40. Yousefnia S, Naseri D, Seyed Forootan F, Tabatabaeian M, Moattar F, Ghafghazi T, et al. Suppressive role of Viola odorata extract on malignant characters of mammosphere-derived breast cancer stem cells. Clin Transl Oncol. 2020;22:1619–34.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Li C-L, Xu Q-Q, Cheng D, Liu K-D, Sun Z-Q. Quercetin inhibits invasion and angiogenesis of esophageal cancer cells. Pathol Res Pract. 2021;222: 153455.

    Article  CAS  PubMed  Google Scholar 

  42. Salama YA, El-Karef A, El Gayyar AM, Abdel-Rahman N. Beyond its antioxidant properties: Quercetin targets multiple signalling pathways in hepatocellular carcinoma in rats. Life Sci. 2019;236: 116933.

    Article  CAS  PubMed  Google Scholar 

  43. Carrano R, Grande M, Leti Maggio E, Zucca C, Bei R, Palumbo C, et al. Dietary Polyphenols Effects on Focal Adhesion Plaques and Metalloproteinases in Cancer Invasiveness. Biomedicines. 2024;12:482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuo C-L, Lai K-C, Ma Y-S, Weng S-W, Lin J-P, Chung J-G. Gallic acid inhibits migration and invasion of SCC-4 human oral cancer cells through actions of NF-κB, Ras and matrix metalloproteinase-2 and-9. Oncol Rep. 2014;32:355–61.

    Article  CAS  PubMed  Google Scholar 

  45. Boubaker J, Ben Toumia I, Sassi A, Bzouich-Mokded I, Ghoul Mazgar S, Sioud F, et al. Antitumoral potency by immunomodulation of chloroform extract from leaves of Nitraria retusa, Tunisian medicinal plant, via its major compounds β-sitosterol and palmitic acid in BALB/c mice bearing induced tumor. Nutr Cancer. 2018;70:650–62.

    Article  CAS  PubMed  Google Scholar 

  46. Alqahtani FY, Aleanizy FS, Mahmoud AZ, Farshori NN, Alfaraj R, Al-Sheddi ES, et al. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi J Biol Sci. 2019;26:1089–92.

    Article  CAS  PubMed  Google Scholar 

  47. Izu GO, Adeyi AO, Erukainure OL, Islam MS. Gamma-sitosterol–rich fraction from the methanolic extract of Ficus exasperata restores diabetes associated pathophysiological alterations in an alloxan-induced diabetic rats. Biokemistri. 2022;33.

  48. Santos CCdMP, Salvadori MS, Mota VG, Costa LM, de Almeida AAC, de Oliveira GAL, et al. Antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci J. 2013;2013.

  49. Galli F, Azzi A, Birringer M, Cook-Mills JM, Eggersdorfer M, Frank J, et al. Vitamin E: emerging aspects and new directions. Free Radical Biol Med. 2017;102:16–36.

    Article  CAS  Google Scholar 

  50. Wal A, Srivastava R, Wal P, Rai A, Sharma S. Lupeol as a magical drug. Pharm Biol Eval. 2015;2:142–51.

    Google Scholar 

Download references

Acknowledgements

We are obliged to the School of Biological Sciences (SBS), PU, and Dr. Muhammad Ali (in charge of animal house) to provide us animal house facility, to conduct in vivo study as well as other basic research facilities. We are thankful to Miss Kokab Farooq for performing the spheroid formation assay as a part of our revised manuscript.

Funding

We are thankful to Higher Education Commission (HEC) Pakistan for funding this research under National Research Program for Universities (NRPU) project (6758/Punjab/NRPU/R&D/HEC/2016).

Author information

Authors and Affiliations

Authors

Contributions

SG contributed to the study design and performed the experiments. FT and IA data interpretation, and manuscript preparation. MAS, AT, LA, MA, and MIA provided research material and performed the statistical analysis. NS Conceptualization, supervision, revising, and editing the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Naveed Shahzad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human participants

The study did not involve Human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gull, S., Tasneem, F., Ahmed, I. et al. Ethanolic extract of Euphorbia royleana Boiss. reduces metastasis of breast cancer cells and inhibits tumor progression in vivo. Med Oncol 41, 152 (2024). https://doi.org/10.1007/s12032-024-02378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02378-6

Keywords

Navigation