Skip to main content
Log in

Exploring the immunomodulatory potential of Brahmi (Bacopa monnieri) in the treatment of invasive ductal carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Bacopa monnieri (L) Wettst, commonly known as Brahmi, stands as a medicinal plant integral to India’s traditional medical system, Ayurveda, where it is recognized as a “medhya rasayana”—a botanical entity believed to enhance intellect and mental clarity. Its significant role in numerous Ayurvedic formulations designed to address conditions such as anxiety, memory loss, impaired cognition, and diminished concentration underscores its prominence. Beyond its application in cognitive health, Brahmi has historically been employed in Ayurvedic practices for the treatment of inflammatory diseases, including arthritis. In contemporary biomedical research, Bacopa monnieri can attenuate the release of pro-inflammatory cytokines TNF-α and IL-6 in animal models. However, there remains a paucity of information regarding Bacopa’s potential as an anticancer agent, warranting further investigation in this domain. Based on previous findings with Brahmi (Bacopa monnieri), the current study aims to find out the role of Brahmi plant preparation (BPP) in immunomodulatory actions on IDC. Employing a specific BPP concentration, we conducted a comprehensive study using MTT assay, ELISA, DNA methylation analysis, Western blotting, ChIP, and mRNA profiling to assess BPP’s immunomodulatory properties. Our research finding showed the role of BPP in augmenting the action of T helper 1 (TH1) cells which secreted interferon-γ (IFN-γ) which in turn activated cytotoxic T-lymphocytes (CTL) to kill the cells of IDC (*p < 0.05). Moreover, we found out that treatment with BPP not only increased the activities of tumor-suppressor genes (p53 and BRCA1) but also decreased the activities of oncogenes (Notch1 and DNAPKcs) in IDC (*p < 0.05). BPP had an immense significance in controlling the epigenetic dysregulation in IDC through the downregulation of Histone demethylation & Histone deacetylation and upregulation of Histone methylation and Histone acetylation (*p < 0.05). Our Chromatin immunoprecipitation (ChIP)-qPCR data showed BPP treatment increased percentage enrichment of STAT1 & BRCA1 (*p < 0.05) and decreased percentage enrichment of STAT3, STAT5 & NF ΚB (*p < 0.05) on both TBX21 and BRCA1 gene loci in IDC. In addition, BPP treatment reduced the hypermethylation of the BRCA1-associated-DNA, which is believed to be a major factor in IDC (*p < 0.05). BPP not only escalates the secretion of type 1 specific cytokines but also escalates tumor suppression and harmonizes various epigenetic regulators and transcription factors associated with Signal Transducer and Activator of Transcription (STAT) to evoke tumor protective immunity in IDC.

Graphical abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw data supporting the conclusion of this article will be made available by the authors without undue reservation. The data that has been used is confidential.

Abbreviations

IDC:

Invasive ductal carcinoma

BPP:

Brahmi plant preparation

TH :

T helper cell

IFN:

Interferon

CTL:

Cytotoxic T lymphocytes

ChIP-qPCR:

Chromatin immunoprecipitation-quantitative real time polymerase chain reaction

PBMCs:

Peripheral blood mononuclear cells

PBS:

Phosphate buffered saline

RPMI 1640:

Rosewell Park Memorial Institute Media

Con A:

Concanavalin A

DMSO:

Dimethyl sulfoxide

ELISA:

Enzyme-linked immunosorbent assay

BSA:

Bovine serum albumin

TMB:

Tetramethyl benzidine

OD:

Optical density

LDH:

Lactate dehydrogenase

SEM:

Standard error of mean

References

  1. Basak A, Hossain ML, Parvin MN. Evaluation of phytochemical and pharmacological activities of Bacopa monnieri (L.). Int J Sci Rep. 2016;2(10):242.

    Article  Google Scholar 

  2. Nemetchek MD, Stierle AA, Stierle DB, Lurie DI. The Ayurvedic plant Bacopa monnieri inhibits inflammatory pathways in the brain. J Ethnopharmacol. 2017;197:92–100.

    Article  PubMed  Google Scholar 

  3. Ghosh S, Khanam R, Acharya Chowdhury A. The evolving roles of Bacopa monnieri as potential anti-cancer agent: a review. Nutr Cancer. 2021;73(11–12):2166–76.

    Article  CAS  PubMed  Google Scholar 

  4. Mathur D, Goyal K, Koul V, Anand A. The molecular links of re-emerging therapy: a review of evidence of Brahmi (Bacopa monniera). Front Pharmacol. 2016;7:44.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Singh HK, Dhawan BN. Effect of Bacopa monniera Linn.(Brāhmi) extract on avoidance responses in rat. J Ethnopharmacol. 1982;5(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  6. Gohil KJ, Patel JA. A review on Bacopa monniera: current research and future prospects. Int J Green Pharm. 2010;4(1):1–9.

    Article  Google Scholar 

  7. Aguiar S, Borowski T. Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuvenation Res. 2013;16(4):313–26.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Calabrese C, Gregory WL, Leo M, Kraemer D, Bone K, Oken B. Effects of a standardized Bacopa monnieri extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebo-controlled trial. J Altern Complement Med. 2008;14(6):707–13.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine. 2005;12(4):305–17.

    Article  CAS  PubMed  Google Scholar 

  10. Sairam K, Dorababu M, Goel RK, Bhattacharya SK. Antidepressant activity of standardized extract of Bacopa monniera in experimental models of depression in rats. Phytomedicine. 2002;9(3):207–11.

    Article  CAS  PubMed  Google Scholar 

  11. Sairam K, Rao CV, Babu MD, Goel RK. Prophylactic and curative effects of Bacopa monniera in gastric ulcer models. Phytomedicine. 2001;8(6):423–30.

    Article  CAS  PubMed  Google Scholar 

  12. Sinha S, Saxena R. Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-a content in medicinal plant Bacopa monnieri L. Chemosphere. 2006;62(8):1340–50.

    Article  CAS  PubMed  Google Scholar 

  13. Sharma GN, Dave R, Sanadya J, Sharma P, Sharma K. Various types and management of breast cancer: an overview. J Adv Pharm Technol Res. 2010;1(2):109.

    PubMed  PubMed Central  Google Scholar 

  14. Agre AM, Upade AC, Yadav MA, Kumbhar SB. A review on breast cancer and its management. World J Pharm Res. 2021;10:408–37.

    CAS  Google Scholar 

  15. Shirode Nitesh G, Jadhav Sejal R. Breast cancer, factors influencing of it and management of breast cancer. World J Pharm Res. 2021;10:507–22.

    Google Scholar 

  16. Mersin H, Yıldırım E, Gülben K, Berberoğlu U. Is invasive lobular carcinoma different from invasive ductal carcinoma? Eur J Surg Oncol. 2003;29(4):390–5.

    Article  CAS  PubMed  Google Scholar 

  17. Du JR, Long FY, Chen C. Research progress on natural triterpenoid saponins in the chemoprevention and chemotherapy of cancer. Enzymes. 2014;36:95–130.

    Article  CAS  PubMed  Google Scholar 

  18. Palethorpe HM, Tomita Y, Smith E, Pei JV, Townsend AR, Price TJ, Young JP, Yool AJ, Hardingham JE. The aquaporin 1 inhibitor bacopaside II reduces endothelial cell migration and tubulogenesis and induces apoptosis. Int J Mol Sci. 2018;19(3):653.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pei JV, Kourghi M, De Ieso ML, Campbell EM, Dorward HS, Hardingham JE, Yool AJ. Differential inhibition of water and ion channel activities of mammalian aquaporin-1 by two structurally related bacopaside compounds derived from the medicinal plant Bacopa monnieri. Mol Pharmacol. 2016;90(4):496–507.

    Article  CAS  PubMed  Google Scholar 

  20. Peng L, Zhou Y, Kong DY, Zhang WD. Antitumor activities of dammarane triterpene saponins from Bacopa monniera. Phytother Res. 2010;24(6):864–8.

    Article  CAS  PubMed  Google Scholar 

  21. Smith E, Palethorpe HM, Tomita Y, Pei JV, Townsend AR, Price TJ, Young JP, Yool AJ, Hardingham JE. The purified extract from the medicinal plant Bacopa monnieri, bacopaside II, inhibits growth of colon cancer cells in vitro by inducing cell cycle arrest and apoptosis. Cells. 2018;7(7):81.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Abid F, Saleem M, Zahid S, Arshad S, Yasir S, Qayyum M, Ashiq K, Tanveer S, Bajwa M, Ashiq S. A comprehensive review on anti-cancer medicinal plants. Int J Bot Stud. 2010;4:144–50.

    Google Scholar 

  23. Chandra S, Gahlot M, Choudhary AN, Palai S, de Almeida RS, de Vasconcelos JEL, dos Santos FAV, de Farias PAM, Coutinho HDM. Scientific evidences of anticancer potential of medicinal plants. Food Chem Adv. 2023. https://doi.org/10.1016/j.focha.2023.100239.

    Article  Google Scholar 

  24. Abdel-Moneim A, Magdy A. Review on medicinal plants as potential sources of cancer prevention and treatment. Eur J Biomed Pharm Sci. 2016;3(6):45–62.

    CAS  Google Scholar 

  25. Jonnalagadda B, Arockiasamy S, Vetrivel U, PA A. In silico docking of phytocompounds to identify potent inhibitors of signaling pathways involved in prostate cancer. J Biomol Struct Dyn. 2021;39(14):5182–208.

    Article  CAS  PubMed  Google Scholar 

  26. Sharma P, Kumar D, Shri R, Kumar S. Mechanistic insights and docking studies of phytomolecules as potential candidates in the management of cancer. Curr Pharm Des. 2022;28(33):2704–24.

    Article  CAS  PubMed  Google Scholar 

  27. John S, Sivakumar KC, Mishra R. Bacoside a induces tumor cell death in human glioblastoma cell lines through catastrophic macropinocytosis. Front Mol Neurosci. 2017;10:171.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Aithal MG, Rajeswari N. Bacoside a induced sub-G0 arrest and early apoptosis in human glioblastoma cell line U-87 MG through notch signaling pathway. Brain Tumor Res Treat. 2019;7(1):25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu HY, Ji YL, Du H, Chen SH, Wang DP, Lv QL. Bacoside a inhibits the growth of glioma by promoting apoptosis and autophagy in U251 and U87 cells. Naunyn Schmiedebergs Arch Pharmacol. 2023. https://doi.org/10.1007/s00210-023-02724-x.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bandyopadhyay A, Garai S, Banerjee PP, Bhattacharya S, Chattopadhyay A. Bacopasaponins with cytotoxic activity against human breast cancer cells in vitro. Mol Biol Rep. 2021;48:2497–505.

    Article  CAS  PubMed  Google Scholar 

  31. Mallick MN, Akhtar MS, Najm MZ, Tamboli ET, Ahmad S, Husain SA. Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line. J Pharm Bioallied Sci. 2015;7(4):325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Palethorpe HM, Smith E, Tomita Y, Nakhjavani M, Yool AJ, Price TJ, Young JP, Townsend AR, Hardingham JE. Bacopasides I and II act in synergy to inhibit the growth, migration and invasion of breast cancer cell lines. Molecules. 2019;24(19):3539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fatima U, Roy S, Ahmad S, Ali S, Elkady WM, Khan I, Alsaffar RM, Adnan M, Islam A, Hassan MI. Pharmacological attributes of Bacopa monnieri extract: current updates and clinical manifestation. Front Nutr. 2022;9: 972379.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moskwa J, Naliwajko SK, Markiewicz-Żukowska R, Gromkowska-Kępka KJ, Nowakowski P, Strawa JW, Borawska MH, Tomczyk M, Socha K. Chemical composition of Polish propolis and its antiproliferative effect in combination with Bacopa monnieri on glioblastoma cell lines. Sci Rep. 2020;10(1):21127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Girard N, Lou E, Azzoli CG, Reddy R, Robson M, Harlan M, Orlow I, Yatabe Y, Nafa K, Ladanyi M, Viale A. Analysis of genetic variants in never-smokers with lung cancer facilitated by an Internet-based blood collection protocol: a preliminary report. Clin Cancer Res. 2010;16(2):755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Taylor MD, Sadhukhan S, Kottangada P, Ramgopal A, Sarkar K, D’Silva S, Selvakumar A, Candotti F, Vyas YM. Nuclear role of WASp in the pathogenesis of dysregulated TH1 immunity in human Wiskott-Aldrich syndrome. Sci Transl Med. 2010;2(37):37ra44.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Baral R, Mandal I, Chattopadhyay U. Immunostimulatory neem leaf preparation acts as an adjuvant to enhance the efficacy of poorly immunogenic B16 melanoma surface antigen vaccine. Int Immunopharmacol. 2005;5(7–8):1343–52.

    Article  CAS  PubMed  Google Scholar 

  38. Sadhukhan S, Sarkar K, Taylor M, Candotti F, Vyas YM. Nuclear role of WASp in gene transcription is uncoupled from its ARP2/3-dependent cytoplasmic role in actin polymerization. J Immunol. 2014;193(1):150–60.

    Article  CAS  PubMed  Google Scholar 

  39. Bhootra S, Jill N, Rajak R, Shanmugam G, Rakshit S, Kannanthodi S, Thakkar V, George M, Sarkar K. Diospyros malabarica fruit preparation mediates immunotherapeutic modulation and epigenetic regulation to evoke protection against non–small cell lung cancer (NSCLC). J Ethnopharmacol. 2023;314: 116525.

    Article  CAS  PubMed  Google Scholar 

  40. Pal R, Rakshit S, Shanmugam G, Paul N, Bhattacharya D, Chatterjee A, Singh A, George M, Sarkar K. Involvement of Xeroderma Pigmentosum Complementation Group G (XPG) in epigenetic regulation of T-Helper (TH) cell differentiation during breast cancer. Immunobiology. 2022;227(5): 152259.

    Article  CAS  PubMed  Google Scholar 

  41. Sarkar K, Sadhukhan S, Han SS, Vyas YM. SUMOylation-disrupting WAS mutation converts WASp from a transcriptional activator to a repressor of NF-κB response genes in T cells. Blood. 2015;126(14):1670–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kurien BT, Scofield RH. Western blotting: an introduction. Western blotting: methods and protocols. 2015. https://doi.org/10.1007/978-1-4939-2694-7_5.

    Article  Google Scholar 

  43. Chatterjee A, Singh A, Shanmugam G, Rakshit S, Mohanty LM, Kumar A, Harihar S, Sarkar K. Neem leaf glycoprotein mediated epigenetic modification in oral squamous cell carcinoma. Phytomed Plus. 2023;3(1): 100400.

    Article  Google Scholar 

  44. Bose A, Chakraborty K, Sarkar K, Goswami S, Chakraborty T, Pal S, Baral R. Neem leaf glycoprotein induces perforin-mediated tumor cell killing by T and NK cells through differential regulation of IFNγ signaling. J Immunother. 2009;32(1):42–53.

    Article  CAS  PubMed  Google Scholar 

  45. Swaroop AK, Lalitha CMVN, Shanmugam M, Subramanian G, Natarajan J, Selvaraj J. Plant derived immunomodulators; a critical review. Adv Pharm Bull. 2022;12(4):712.

    CAS  PubMed  Google Scholar 

  46. Dar KB, Khan IS, Amin S, Ganie AH, Bhat AH, Dar SA, Reshi BA, Ganie SA. Active cousinia thomsonii extracts modulate expression of crucial proinflammatory mediators/cytokines and NFκB cascade in lipopolysaccharide-induced albino wistar rat model. J Inflamm Res. 2020;13:829–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Özenver N, Efferth T. Evaluation of immunomodulatory potential of medicinal plants—present scenario. In: Evidence-based validation of herbal medicine. Elsevier; 2022. p. 487–500.

    Chapter  Google Scholar 

  48. Zebeaman M, Tadesse MG, Bachheti RK, Bachheti A, Gebeyhu R, Chaubey KK. Plants and plant-derived molecules as natural immunomodulators. Biomed Res Int. 2023. https://doi.org/10.1155/2023/7711297.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bashir Dar K, Hussain Bhat A, Amin S, Masood A, Afzal Zargar M, Ahmad Ganie S. Inflammation: a multidimensional insight on natural anti-inflammatory therapeutic compounds. Curr Med Chem. 2016;23(33):3775–800.

    Article  Google Scholar 

  50. Deb DD, Kapoor P, Dighe RP, Padmaja R, Anand MS, D’souza P, Deepak M, Murali B, Agarwal A. In vitro safety evaluation and anticlastogenic effect of BacoMind™ on human lymphocytes. Biomed Environ Sci. 2008;21(1):7–23.

    Article  PubMed  Google Scholar 

  51. Mishra S, Yadav A, Rajan N. Medicinal uses of Brahmi. In: Traditional utilization and pharmacological properties of medicinal plants. Scripown Publications; 2021. p. 14.

    Google Scholar 

Download references

Funding

This work has been supported by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India (Sanction order No. “ECR/2016/000965”).

Author information

Authors and Affiliations

Authors

Contributions

SR: Formal analysis, Investigation, Data curation, Writing—original draft. GS: Writing—review & editing, Supervision. SR: Writing—review & editing, Supervision. MG: Resources. KS: Conceptualization, Methodology, Software, Validation, Writing—review & editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Koustav Sarkar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The study involving human participants was reviewed and approved by the Ethics Committee of SRM Medical College Hospital and Research Centre, Kattankulathur, Tamil Nadu 603203, India. All human participants gave their written informed consent to participate in the study as per the Institutional Ethical Committee guidelines (Ethics Clearance Number: 2997/IEC/2021).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Shanmugam, G., Rakshit, S. et al. Exploring the immunomodulatory potential of Brahmi (Bacopa monnieri) in the treatment of invasive ductal carcinoma. Med Oncol 41, 115 (2024). https://doi.org/10.1007/s12032-024-02365-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02365-x

Keywords

Navigation