Skip to main content
Log in

Identification of small molecule inhibitors against Lin28/let-7 to suppress tumor progression and its alleviation role in LIN28-dependent glucose metabolism

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The reciprocal suppression of an RNA-binding protein LIN28 (human abnormal cell lineage 28) and miRNA Let-7 (Lethal 7) is considered to have a prime role in hepatocellular carcinoma (HCC). Though targeting this inhibition interaction is effective for therapeutics, it causes other unfavorable effects on glucose metabolism and increased insulin resistance. Hence, this study aims to identify small molecules targeting Lin28/let-7 interaction along with additional potency to improve insulin sensitivity. Of 22,14,996 small molecules screened by high throughput virtual screening, 6 molecules, namely 41354, 1558, 12437, 23837, 15710, and 8319 were able to block the LIN28 interaction with let-7 and increase the insulin sensitivity via interacting with PPARγ (peroxisome proliferator-activated receptors γ). MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) analysis is used to re-score the binding affinity of docked complexes. Upon further analysis, it is also seen that these molecules have superior ADME (Absorption, Distribution, Metabolism, and Excretion) properties and form stable complexes with the targets for a significant period in a biologically simulated environment (Molecular Dynamics simulation) for 100 ns. From our results, we hypothesize that these identified 6 small molecules can be potential candidates for HCC treatment and the glucose metabolic disorder caused by the HCC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

2D:

Two-Dimensional

3D:

Three-Dimensional

ADME:

Absorption, Distribution, Metabolism and Excretion

B3LYP:

Backe’s three Lee-Yang-Parr

DFT:

Density Functional Theory

EMM:

Molecular Mechanics Energies

GNP:

Non-Polar solvation

GSGB:

SGB polar solvation model

H-bonds:

Hydrogen Bonds

HCC:

Hepatocellular carcinoma

HOMO:

Highest Occupied Molecular Orbital

HTVS:

High Throughput Virtual Screening

Let-7:

Lethal 7

LIN28:

Human abnormal cell lineage 28

LUMO:

Lowest Unoccupied Molecular Orbital

MD:

Molecular Dynamics simulation

MESP:

Molecular Electrostatic Potential

miRNA:

microRNA

MM-GBSA:

Molecular Mechanics-Generalized Born Surface Area

NPT:

Isothermal–isobaric ensemble

OPLS:

Optimized Potential for Liquid Simulation

OPLS-AA:

Optimized Potential for Liquid Simulation- All Atom

PPARγ:

Peroxisome Proliferator-Activated Receptorsγ

PBF:

Poisson Boltzmann Finite

QPlogS:

Aqueous solubility

QPPCaco :

Caco-2 cell permeability

QPlogHERG:

IC50 value for blockage of HERG K+ channels

QPlogPo/w:

Octanol/water partition coefficient

RMSF:

Root Mean-Square Fluctuation

RMSD:

Root Mean-Square Deviation

RNA:

Ribonucleic Acid

SP:

Standard Precision

SPC:

Simple Point Charge

SD:

Standard Deviation

XP:

Extra Precision

ZKD:

Zinc Knuckle Domain

PCA:

Principal Component Analysis

FEL:

Free Energy Landscape

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  2. Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian J Med Res. 2022. https://doi.org/10.4103/ijmr.ijmr_1821_22.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhou J, Ng SB, Chng WJ. LIN28/LIN28B: an emerging oncogenic driver in cancer stem cells. Int J Biochem Cell Biol. 2013. https://doi.org/10.1016/j.biocel.2013.02.006.

    Article  PubMed  Google Scholar 

  4. Mizuno R, Kawada K, Sakai Y. The molecular basis and therapeutic potential of Let-7 MicroRNAs against Colorectal Cancer. Can J Gastroenterol Hepatol. 2018. https://doi.org/10.1155/2018/5769591.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roos M, Pradère U, Ngondo RP, et al. A small-molecule inhibitor of Lin28. ACS Chem Biol. 2016. https://doi.org/10.1021/acschembio.6b00232.

    Article  PubMed  Google Scholar 

  6. Wang L, Rowe RG, Jaimes A, et al. Small-molecule inhibitors disrupt let-7 Oligouridylation and Release the selective blockade of let-7 Processing by LIN28. Cell Rep. 2018. https://doi.org/10.1016/j.celrep.2018.04.116.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lightfoot HL, Miska EA, Balasubramanian S. Identification of small molecule inhibitors of the Lin28- mediated blockage of pre-let-7 g processing. Org Biomol Chem. 2016. https://doi.org/10.1039/c6ob01945e.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Borgelt L, Li F, Hommen P, et al. Trisubstituted pyrrolinones as small-molecule inhibitors disrupting the Protein-RNA Interaction of LIN28 and Let-7. ACS Med Chem Lett. 2021. https://doi.org/10.1021/acsmedchemlett.0c00546.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lorenz DA, Kaur T, Kerk SA, Gallagher EE, Sandoval J, Garner AL. Expansion of cat-ELCCA for the Discovery of small molecule inhibitors of the Pre-let-7-Lin28 RNA-Protein Interaction. ACS Med Chem Lett. 2018. https://doi.org/10.1021/acsmedchemlett.8b00126.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Goebel GL, Hohnen L, Borgelt L, et al. Small molecules with tetrahydroquinoline-containing Povarov scaffolds as inhibitors disrupting the Protein-RNA interaction of LIN28-let-7. Eur J Med Chem. 2022. https://doi.org/10.1016/j.ejmech.2021.114014.

    Article  PubMed  Google Scholar 

  11. Lim D, Byun WG, Park SB. Restoring Let-7 microRNA Biogenesis using a small-molecule inhibitor of the Protein-RNA Interaction. ACS Med Chem Lett. 2018. https://doi.org/10.1021/acsmedchemlett.8b00323.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hommen P, Hwang J, Huang F, Borgelt L, Hohnen L, Wu P. Chromenopyrazole-peptide conjugates as small-molecule based inhibitors disrupting the Protein-RNA Interaction of LIN28-let-7. ChemBioChem. 2023. https://doi.org/10.1002/cbic.202300376.

    Article  PubMed  Google Scholar 

  13. Borgelt L, Huang F, Hohnen L, et al. Spirocyclic chromenopyrazole inhibitors disrupting the Interaction between the RNA-Binding protein LIN28 and Let-7. ChemBioChem. 2023. https://doi.org/10.1002/cbic.202300168.

    Article  PubMed  Google Scholar 

  14. Zhang Q, Shi M, Zheng R, Han H, Zhang X, Lin F. C1632 inhibits ovarian cancer cell growth and migration by inhibiting LIN28B/let-7/FAK signaling pathway and FAK phosphorylation. Eur J Pharmacol. 2023. https://doi.org/10.1016/j.ejphar.2023.175935.

    Article  PubMed  Google Scholar 

  15. Tsialikas J, Romer-Seibert J. LIN28: roles and regulation in development and beyond. Development; 2015. 2397 – 404.

  16. Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 pathway in Cancer. Front Genet. 2017. https://doi.org/10.3389/fgene.2017.00031.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nguyen LH, Zhu H. Lin28 and let-7 in cell metabolism and cancer. Transl Pediatr. 2015. https://doi.org/10.3978/j.issn.2224-4336.2015.01.05.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu K, Ahmad T, Eri R. LIN28A: a multifunctional versatile molecule with future therapeutic potential. World J Biol Chem. 2022. https://doi.org/10.4331/wjbc.v13.i2.35.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lekka E, Civenni G, Berk C, Schmidli S, Kokanovic A, Catapano C, Hall J. Lin28 Inhibition by a Small Molecule Led to Insulin Resistance and Increased Ketogenesis. Swiss Academy of Pharmaceutical Sciences. 2019. https://www.saphw.ch/sites/default/files/attachments/lekka-31_0.pdf. Accessed 2 Sep 2022.

  20. Zhu H, Shyh-Chang N, Segrè AV, et al. The Lin28/let-7 axis regulates glucose metabolism. Cell. 2011. https://doi.org/10.1016/j.cell.2011.08.033.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McDaniel K, Hall C, Sato K, et al. Lin28 and let-7: roles and regulation in liver diseases. Am J Physiol Gastrointest Liver Physiol. 2016. https://doi.org/10.1152/ajpgi.00080.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Leonardini A, Laviola L, Perrini S, Natalicchio A, Giorgino F. Cross-talk between PPARgamma and Insulin Signaling and modulation of insulin sensitivity. PPAR Res. 2009. https://doi.org/10.1155/2009/818945.

    Article  PubMed  Google Scholar 

  23. Wang L, Nam Y, Lee AK, Yu C, Roth K, Chen C, Ransey EM, Sliz P. LIN28 zinc Knuckle Domain is required and sufficient to Induce let-7 Oligouridylation. Cell Rep. 2017. https://doi.org/10.1016/j.celrep.2017.02.044.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Artis DR, Lin JJ, Zhang C, et al. Scaffold-based discovery of indeglitazar, a PPAR pan-active anti-diabetic agent. Proc Natl Acad Sci U S A. 2009. https://doi.org/10.1073/pnas.0811325106.

    Article  PubMed  Google Scholar 

  25. Schrödinger Suite 2017-4. Protein Preparation Wizard, Epik, Schrödinger, LLC, New York, NY,2017.

  26. Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS ALL atoms force field on conformation energetics and properties of organic liquids. J Am Chem Soc. 1996. https://doi.org/10.1021/ja9621760.

    Article  Google Scholar 

  27. Radaeva M, Ho CH, Xie N, Zhang S, Lee J, Liu L, Lallous N, Cherkasov A, Dong X. Discovery of Novel Lin28 inhibitors to suppress Cancer Cell Stemness. Cancers (Basel). 2022. https://doi.org/10.3390/cancers14225687.

    Article  PubMed  Google Scholar 

  28. Schrödinger. Release 2021-3: LigPrep. New York, NY: Schrödinger, LLC; 2021.

    Google Scholar 

  29. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004. https://doi.org/10.1021/jm030644s.

    Article  PubMed  Google Scholar 

  30. Maiti P, Nand M, Mathpal S, et al. Potent multi-target natural inhibitors against SARS-CoV-2 from medicinal plants of the Himalaya: a discovery from hybrid machine learning, chemoinformatics, and simulation assisted screening. J Biomol Struct Dyn. 2023. https://doi.org/10.1080/07391102.2023.2257333.

    Article  PubMed  Google Scholar 

  31. Mathpal S, Joshi T, Sharma P, et al. In silico screening of chalcone derivatives as promising EGFR-TK inhibitors for the clinical treatment of cancer. 3 Biotech. 2024. https://doi.org/10.1007/s13205-023-03858-8.

    Article  PubMed  Google Scholar 

  32. Schrödinger Release 2022: Maestro-desmond interoperability tools, Schrödinger, New York, NY, 2022.

  33. Banks JL, Beard HS, Cao Y, et al. Integrated modeling program, Applied Chemical Theory (IMPACT). J Comput Chem. 2005. https://doi.org/10.1002/jcc.20292.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Toukmaji AY, Board JA Jr. Ewald summation techniques in perspective: a survey. Comput Phys Commun. 1996. https://doi.org/10.1016/0010-4655(96)00016-1.

    Article  Google Scholar 

  35. Martyma GJ, Klein ML, Tuckerman M. Nose-Hoover chains; the canonical ensemble via continuous dynamics. J Chem Phys. 1992. https://doi.org/10.1063/1.463940.

    Article  Google Scholar 

  36. Schrödinger Release 2012-3. Prime, Schrödinger, LLC, New York, NY, 2021.

  37. Schrödinger. Release 2021-3: QikProp, Schrödinger, LLC, New York, NY, 2021.

  38. Schrödinger Release 2021-3. Jaguar, Schrödinger, LLC, New York, NY, 2021.

  39. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988. https://doi.org/10.1103/PhysRevB.37.785.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception, idea generation, methodology design, results generation and analysis. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruckmani Kandasamy.

Ethics declarations

Ethics approval/Consent to Participate/Consent to publish

No human or animal subjects are included in this study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, R., Sundararaj, R. & Kandasamy, R. Identification of small molecule inhibitors against Lin28/let-7 to suppress tumor progression and its alleviation role in LIN28-dependent glucose metabolism. Med Oncol 41, 118 (2024). https://doi.org/10.1007/s12032-024-02350-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02350-4

Keywords

Navigation