Skip to main content

Advertisement

Log in

A small molecule compound 759 inhibits the wnt/beta-catenin signaling pathway via increasing the Axin protein stability

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Wnt/β-catenin signaling plays important role in cancers. Compound 759 is one of the compounds previously screened to identify inhibitors of the Wnt/β-catenin pathway in A549 cells [Lee et al. in Bioorg Med Chem Lett 20:5900–5904, 2010]. However, the mechanism by which Compound 759 induces the inhibition of the Wnt/β-catenin pathway remains unknown. In our study, we employed various assays to comprehensively evaluate the effects of Compound 759 on lung cancer cells. Our results demonstrated that Compound 759 significantly suppressed cell proliferation and Wnt3a-induced Topflash activity and arrested the cell cycle at the G1 stage. Changes in Wnt/β-catenin signaling-related protein expression, gene activity, and protein stability including Axin, and p21, were achieved through western blot and qRT-PCR analysis. Compound 759 treatment upregulated the mRNA level of p21 and increased Axin protein levels without altering the mRNA expression in A549 cells. Co-treatment of Wnt3a and varying doses of Compound 759 dose-dependently increased the amounts of Axin1 in the cytosol and inhibited β-catenin translocation into the nucleus. Moreover, Compound 759 reduced tumor size and weight in the A549 cell-induced tumor growth in the in vivo tumor xenograft mouse model. Our findings indicate that Compound 759 exhibits potential anti-cancer activity by inhibiting the Wnt/β-catenin signaling pathway through the increase of Axin1 protein stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

Data availability

The datasets analyzed and displayed during this research are available from the corresponding authors upon reasonable request.

References

  1. Lee SB, Park YI, Dong MS, Gong YD. Identification of 2,3,6-trisubstituted quinoxaline derivatives as a Wnt2/beta-catenin pathway inhibitor in non-small-cell lung cancer cell lines. Bioorg Med Chem Lett. 2010;20(19):5900–4. https://doi.org/10.1016/j.bmcl.2010.07.088.

    Article  CAS  PubMed  Google Scholar 

  2. Guimaraes PPG, Tan M, Tammela T, Wu K, Chung A, Oberli M, Wang K, Spektor R, Riley RS, Viana CTR, Jacks T, Langer R, Mitchell MJ. Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J Control Release. 2018;290:75–87. https://doi.org/10.1016/j.jconrel.2018.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lu Y, Zhang X, Zhang H, Zhu Z. Prognosis and biological function of miR-3195 in non-small cell lung cancer. Cancer Manag Res. 2022;14:169–76. https://doi.org/10.2147/CMAR.S345618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sette G, Salvati V, Giordani I, Pilozzi E, Quacquarini D, Duranti E, De Nicola F, Pallocca M, Fanciulli M, Falchi M, Pallini R, De Maria R, Eramo A. Conditionally reprogrammed cells (CRC) methodology does not allow the in vitro expansion of patient-derived primary and metastatic lung cancer cells. Int J Cancer. 2018;143(1):88–99. https://doi.org/10.1002/ijc.31260.

    Article  CAS  PubMed  Google Scholar 

  5. Bosch-Barrera J, Verdura S, Ruffinelli JC, Carcereny E, Sais E, Cuyas E, Palmero R, Lopez-Bonet E, Hernandez-Martinez A, Oliveras G, Buxo M, Izquierdo A, Moran T, Nadal E, Menendez JA. Silibinin suppresses tumor cell-intrinsic resistance to Nintedanib and enhances its clinical activity in lung cancer. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13164168.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/beta-catenin signaling pathway in human malignancies. J Cell Physiol. 2022;237(1):199–238. https://doi.org/10.1002/jcp.30561.

    Article  CAS  PubMed  Google Scholar 

  7. Zeng H, Lu B, Zamponi R, Yang Z, Wetzel K, Loureiro J, Mohammadi S, Beibel M, Bergling S, Reece-Hoyes J, Russ C, Roma G, Tchorz JS, Capodieci P, Cong F. mTORC1 signaling suppresses Wnt/beta-catenin signaling through DVL-dependent regulation of Wnt receptor FZD level. Proc Natl Acad Sci USA. 2018;115(44):E10362–9. https://doi.org/10.1073/pnas.1808575115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1):9–26. https://doi.org/10.1016/j.devcel.2009.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harb Perspect Biol. 2012. https://doi.org/10.1101/cshperspect.a007880.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jeong W, Jho EH. Regulation of the low-density lipoprotein receptor-related protein LRP6 and its association with disease: Wnt/beta-catenin signaling and beyond. Front Cell Dev Biol. 2021;9:714330. https://doi.org/10.3389/fcell.2021.714330.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Clevers H, Loh KM, Nusse R. Stem cell signalling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 2014;346(6205):1248012. https://doi.org/10.1126/science.1248012.

    Article  CAS  PubMed  Google Scholar 

  12. Jung YS, Park JI. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond beta-catenin and the destruction complex. Exp Mol Med. 2020;52(2):183–91. https://doi.org/10.1038/s12276-020-0380-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gillespie J, Ross RL, Corinaldesi C, Esteves F, Derrett-Smith E, McDermott MF, Doody GM, Denton CP, Emery P, Del Galdo F. Transforming growth factor beta activation primes canonical Wnt signaling through down-regulation of Axin-2. Arthritis Rheumatol. 2018;70(6):932–42. https://doi.org/10.1002/art.40437.

    Article  CAS  PubMed  Google Scholar 

  14. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461–73. https://doi.org/10.1038/onc.2016.304.

    Article  CAS  PubMed  Google Scholar 

  15. Melnik S, Dvornikov D, Muller-Decker K, Depner S, Stannek P, Meister M, Warth A, Thomas M, Muley T, Risch A, Plass C, Klingmuller U, Niehrs C, Glinka A. Cancer cell specific inhibition of Wnt/beta-catenin signaling by forced intracellular acidification. Cell Discov. 2018;4:37. https://doi.org/10.1038/s41421-018-0033-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JH, Park SY, Jun Y, Kim JY, Nam JS. Roles of Wnt target genes in the journey of cancer stem cells. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18081604.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li TM, Ren J, Husmann D, Coan JP, Gozani O, Chua KF. Multivalent tumor suppressor adenomatous polyposis coli promotes Axin biomolecular condensate formation and efficient beta-catenin degradation. Sci Rep. 2020;10(1):17425. https://doi.org/10.1038/s41598-020-74080-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee SB, Gong YD, Park YI, Dong MS. 2,3,6-Trisubstituted quinoxaline derivative, a small molecule inhibitor of the Wnt/beta-catenin signaling pathway, suppresses cell proliferation and enhances radiosensitivity in A549/Wnt2 cells. Biochem Biophys Res Commun. 2013;431(4):746–52. https://doi.org/10.1016/j.bbrc.2013.01.038.

    Article  CAS  PubMed  Google Scholar 

  19. Or CR, Huang CW, Chang CC, Lai YC, Chen YJ, Chang CC. Obatoclax, a Pan-BCL-2 inhibitor, downregulates survivin to induce apoptosis in human colorectal carcinoma cells via suppressing WNT/beta-catenin signaling. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21051773.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gartel AL, Radhakrishnan SK. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005;65(10):3980–5. https://doi.org/10.1158/0008-5472.CAN-04-3995.

    Article  CAS  PubMed  Google Scholar 

  21. Engeland K. Cell cycle regulation: p53–p21-RB signaling. Cell Death Differ. 2022;29(5):946–60. https://doi.org/10.1038/s41418-022-00988-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ennis HL, Lubin M. Cycloheximide: aspects of inhibition of protein synthesis in mammalian cells. Science. 1964;146(3650):1474–6. https://doi.org/10.1126/science.146.3650.1474.

    Article  CAS  PubMed  Google Scholar 

  23. Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/beta-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther. 2021;6(1):307. https://doi.org/10.1038/s41392-021-00701-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neiheisel A, Kaur M, Ma N, Havard P, Shenoy AK. Wnt pathway modulators in cancer therapeutics: an update on completed and ongoing clinical trials. Int J Cancer. 2022;150(5):727–40. https://doi.org/10.1002/ijc.33811.

    Article  CAS  PubMed  Google Scholar 

  25. Gavagan M, Fagnan E, Speltz EB, Zalatan JG. The Scaffold protein Axin promotes signaling specificity within the Wnt pathway by suppressing competing kinase reactions. Cell Syst. 2020;10(6):515–525515. https://doi.org/10.1016/j.cels.2020.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cha B, Kim W, Kim YK, Hwang BN, Park SY, Yoon JW, Park WS, Cho JW, Bedford MT, Jho EH. Methylation by protein arginine methyltransferase 1 increases stability of Axin, a negative regulator of Wnt signaling. Oncogene. 2011;30(20):2379–89. https://doi.org/10.1038/onc.2010.610.

    Article  CAS  PubMed  Google Scholar 

  27. Kim S, Jho EH. The protein stability of Axin, a negative regulator of Wnt signaling, is regulated by Smad ubiquitination regulatory factor 2 (Smurf2). J Biol Chem. 2010;285(47):36420–6. https://doi.org/10.1074/jbc.M110.137471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 2009;461(7264):614–20. https://doi.org/10.1038/nature08356.

    Article  CAS  PubMed  Google Scholar 

  29. Koirala S, Klein J, Zheng Y, Glenn NO, Eisemann T, Fon Tacer K, Miller DJ, Kulak O, Lu M, Finkelstein DB, Neale G, Tillman H, Vogel P, Strand DW, Lum L, Brautigam CA, Pascal JM, Clements WK, Potts PR. Tissue-specific regulation of the Wnt/beta-catenin pathway by PAGE4 inhibition of Tankyrase. Cell Rep. 2020;32(3):107922. https://doi.org/10.1016/j.celrep.2020.107922.

    Article  CAS  PubMed  Google Scholar 

  30. Piperdi B, Ling YH, Liebes L, Muggia F, Perez-Soler R. Bortezomib: understanding the mechanism of action. Mol Cancer Ther. 2011;10(11):2029–30. https://doi.org/10.1158/1535-7163.MCT-11-0745.

    Article  CAS  PubMed  Google Scholar 

  31. Lui TT, Lacroix C, Ahmed SM, Goldenberg SJ, Leach CA, Daulat AM, Angers S. The ubiquitin-specific protease USP34 regulates axin stability and Wnt/beta-catenin signaling. Mol Cell Biol. 2011;31(10):2053–65. https://doi.org/10.1128/MCB.01094-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lehtio L, Chi NW, Krauss S. Tankyrases as drug targets. FEBS J. 2013;280(15):3576–93. https://doi.org/10.1111/febs.12320.

    Article  CAS  PubMed  Google Scholar 

  33. Thorvaldsen TE, Pedersen NM, Wenzel EM, Stenmark H. Differential roles of AXIN1 and AXIN2 in Tankyrase inhibitor-induced formation of degradasomes and beta-catenin degradation. PLoS ONE. 2017;12(1):e0170508. https://doi.org/10.1371/journal.pone.0170508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tolwinski NS, Wieschaus E. Rethinking WNT signaling. Trends Genet. 2004;20(4):177–81. https://doi.org/10.1016/j.tig.2004.02.003.

    Article  CAS  PubMed  Google Scholar 

  35. Cong F, Varmus H. Nuclear-cytoplasmic shuttling of Axin regulates subcellular localization of beta-catenin. Proc Natl Acad Sci USA. 2004;101(9):2882–7. https://doi.org/10.1073/pnas.0307344101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jamieson C, Sharma M, Henderson BR. Targeting the beta-catenin nuclear transport pathway in cancer. Semin Cancer Biol. 2014;27:20–9. https://doi.org/10.1016/j.semcancer.2014.04.012.

    Article  CAS  PubMed  Google Scholar 

  37. Vadlakonda L, Pasupuleti M, Pallu R. Role of PI3K-AKT-mTOR and Wnt signaling pathways in transition of G1-S phase of cell cycle in cancer cells. Front Oncol. 2013;3:85. https://doi.org/10.3389/fonc.2013.00085.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Habib SJ, Acebron SP. Wnt signalling in cell division: from mechanisms to tissue engineering. Trends Cell Biol. 2022;32(12):1035–48. https://doi.org/10.1016/j.tcb.2022.05.006.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Q, Ran R, Song M, Li X, Wu Z, Dai G, Xia R. LncRNA HCP5 acts as a miR-128-3p sponge to promote the progression of multiple myeloma through activating Wnt/beta-catenin/cyclin D1 signaling via PLAGL2. Cell Biol Toxicol. 2022;38(6):979–93. https://doi.org/10.1007/s10565-021-09628-7.

    Article  CAS  PubMed  Google Scholar 

  40. Liu LH, Shi RJ, Chen ZC. Paeonol exerts anti-tumor activity against colorectal cancer cells by inducing G0/G1 phase arrest and cell apoptosis via inhibiting the Wnt/beta-catenin signaling pathway. Int J Mol Med. 2020;46(2):675–84. https://doi.org/10.3892/ijmm.2020.4629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiao ZD, Han L, Lee H, Zhuang L, Zhang Y, Baddour J, Nagrath D, Wood CG, Gu J, Wu X, Liang H, Gan B. Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development. Nat Commun. 2017;8(1):783. https://doi.org/10.1038/s41467-017-00902-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma HM, Cui N, Zheng PS. HOXA5 inhibits the proliferation and neoplasia of cervical cancer cells via downregulating the activity of the Wnt/beta-catenin pathway and transactivating TP53. Cell Death Dis. 2020;11(6):420. https://doi.org/10.1038/s41419-020-2629-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993;75(4):805–16. https://doi.org/10.1016/0092-8674(93)90499-g.

    Article  CAS  PubMed  Google Scholar 

  44. Goh KY, Ng NW, Hagen T, Inoue T. p21-activated kinase interacts with Wnt signaling to regulate tissue polarity and gene expression. Proc Natl Acad Sci U S A. 2012;109(39):15853–8. https://doi.org/10.1073/pnas.1120795109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peng X, Lai KS, She P, Kang J, Wang T, Li G, Zhou Y, Sun J, Jin D, Xu X, Liao L, Liu J, Lee E, Poss KD, Zhong TP. Induction of Wnt signaling antagonists and p21-activated kinase enhances cardiomyocyte proliferation during zebrafish heart regeneration. J Mol Cell Biol. 2021;13(1):41–58. https://doi.org/10.1093/jmcb/mjaa046.

    Article  CAS  PubMed  Google Scholar 

  46. Strzeszewska-Potyrala A, Staniak K, Czarnecka-Herok J, Rafiee MR, Herok M, Mosieniak G, Krijgsveld J, Sikora E. Chromatin-directed proteomics identifies ZNF84 as a p53-independent regulator of p21 in genotoxic stress response. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13092115.

    Article  PubMed  Google Scholar 

  47. Raghu D, Karunagaran D. Plumbagin downregulates Wnt signaling independent of p53 in human colorectal cancer cells. J Nat Prod. 2014;77(5):1130–4. https://doi.org/10.1021/np4010085.

    Article  CAS  PubMed  Google Scholar 

  48. Takagaki N, Sowa Y, Oki T, Nakanishi R, Yogosawa S, Sakai T. Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. Int J Oncol. 2005;26(1):185–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2018R1A2B6008860).

Funding

This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean Government (NRF-2018R1A2B6008860).

Author information

Authors and Affiliations

Authors

Contributions

SS: performed biological experiments and wrote the main manuscript text. JSK prepared Fig. 7. YDG provided Compound 759. MSD provided research funding. MSD and YC are SS advisors and directed the research as co-corresponding authors.

Corresponding author

Correspondence to Mi-Sook Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Animal experiments were conducted in accordance with the guidelines and approval of the Institutional Animal Care and Use Committee of the Korea Research Institute of Bioscience and Biotechnology (Approval #: KRIBB-AEC-12024).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 858 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Gong, YD., Kang, J.S. et al. A small molecule compound 759 inhibits the wnt/beta-catenin signaling pathway via increasing the Axin protein stability. Med Oncol 41, 147 (2024). https://doi.org/10.1007/s12032-024-02314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02314-8

Keywords

Navigation