Skip to main content

Advertisement

Log in

Role of miRNAs to control the progression of Chronic Myeloid Leukemia by their expression levels

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder distinguished by a specific genetic anomaly known as a reciprocal translocation between chromosomes 9 and 22. This translocation causes fusion between the BCR and ABL regions. Consequently, BCR::ABL oncoprotein is formed, which plays a significant role in driving CML progression. Imatinib, a tyrosine kinase inhibitor (TKI), became the first line of drugs against CML. However, with continuous treatment, patients developed resistance against it. Indeed, to address this challenge, microRNA-based therapy emerges as a promising approach. miRNAs are 20–25 nucleotides long and hold great significance in various cellular processes, including cell differentiation, proliferation, migration, and apoptosis. In several malignancies, it has been reported that miRNAs might help to promote or prevent tumourigenesis and abnormal expression because they could act as both oncogenes/tumor suppressors. Recently, because of their vital regulatory function in maintaining cell homeostasis, miRNAs might be used to control CML progression and in developing new therapies for TKI-resistant patients. They might also act as potential prognostic, diagnostic, and therapeutic biomarkers based on their expression profiles. Various annotation tools and microarray-based expression profiles can be used to predict dysregulated miRNAs and their target genes. The main purpose of this review is to provide brief insights into the role of dysregulated miRNAs in CML pathogenesis and to emphasize their clinical relevance, such as their significant potential as therapeutics against CML. Utilizing these miRNAs as a therapeutic approach by inhibition or amplification of their activity could unlock new doors for the therapy of CML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Randolph TR. Chronic myelocytic leukemia–part I: history, clinical presentation, and molecular biology. A S C L S. 2005;18(1):38–48.

    Google Scholar 

  2. Kang ZJ, Liu YF, Xu LZ, Long ZJ, Huang D, Yang Y, Liu B, Feng JX, Pan YJ, Yan JS, Liu Q. The Philadelphia chromosome in leukemogenesis. Chin J Cancer. 2016;35:1–5. https://doi.org/10.1186/s40880-016-0108-0.

    Article  CAS  Google Scholar 

  3. Jiang G, Huang Z, Yuan Y, Tao K, Feng W. Intracellular delivery of anti-BCR/ABL antibody by PLGA nanoparticles suppresses the oncogenesis of chronic myeloid leukemia cells. J Hematol Oncol. 2021;14:1–8. https://doi.org/10.1186/s13045-021-01150-x.

    Article  CAS  Google Scholar 

  4. Zhang Z. Lift the veil of breast cancers using 4 or fewer critical genes. Cancer Inform. 2022;21:11769351221076360. https://doi.org/10.1177/11769351221076360.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kim E, Hwang EJ, Lee J, Kim DY, Kim JY, Kim DW. Patient-specific molecular response dynamics can predict the possibility of relapse during the second treatment-free remission attempt in chronic myelogenous leukemia. Neoplasia. 2022;32:100817. https://doi.org/10.1016/j.neo.2022.100817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martins JR, Moraes LN, Cury SS, Capannacci J, Carvalho RF, Nogueira CR, Hokama NK, Hokama PO. MiR-125a-3p and MiR-320b differentially expressed in patients with chronic myeloid leukemia treated with allogeneic hematopoietic stem cell transplantation and imatinib mesylate. Int J Mol Sci. 2021;22(19):10216. https://doi.org/10.3390/ijms221910216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark RE. Tyrosine kinase inhibitor therapy discontinuation for patients with chronic myeloid leukaemia in clinical practice. Curr Hematol Malig Rep. 2019;14:507–14. https://doi.org/10.1007/s11899-019-00548-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Braun TP, Eide CA, Druker BJ. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 2020;37(4):530–42. https://doi.org/10.1016/j.ccell.2020.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang Y, Qin Y, Jiang G, Feng W, Yuan Y. Targeting MDC1 promotes apoptosis and sensitizes Imatinib resistance in CML cells by mainly disrupting non-homologous end-joining repair. Med Oncol. 2022;39(12):226. https://doi.org/10.1007/s12032-022-01821-w.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Sun H, Su Y, Yi H. Long-term molecular remission after treatment with imatinib in a chronic myeloid leukemia patient with extreme thrombocytosis harboring rare e14a3 (b3a3) BCR: ABL1 transcript: a case report. Curr Oncol. 2022;29(11):45–52. https://doi.org/10.3390/curroncol29110645.

    Article  CAS  Google Scholar 

  11. Soltani I, Douzi K, Gharbi H, Benhassine I, Teber M, Amouri H, Ben Hadj Othman H, Farrah A, Ben Lakhel R, Abbes S, Menif S. Downregulation of miR-451 in Tunisian chronic myeloid leukemia patients: potential implication in imatinib resistance. Hematology. 2017;22(4):201–7. https://doi.org/10.1080/10245332.2016.1252020.

    Article  CAS  PubMed  Google Scholar 

  12. Loscocco F, Visani G, Galimberti S, Curti A, Isidori A. BCR-ABL independent mechanisms of resistance in chronic myeloid leukemia. Front Oncol. 2019;9:939. https://doi.org/10.3389/fonc.2019.00939.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Popp HD, Kohl V, Naumann N, Flach J, Brendel S, Kleiner H, Weiss C, Seifarth W, Saussele S, Hofmann WK, Fabarius A. DNA damage and DNA damage response in chronic myeloid leukemia. Int J Mol Sci. 2020;21(4):1177. https://doi.org/10.3390/ijms21041177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Andretta E, Costa C, Longobardi C, Damiano S, Giordano A, Pagnini F, Montagnaro S, Quintiliani M, Lauritano C, Ciarcia R. Potential approaches versus approved or developing chronic myeloid leukemia therapy. Front Oncol. 2021;11:801779. https://doi.org/10.3389/fonc.2021.801779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheloni G, Tanturli M, Tusa I, Ho DeSouza N, Shan Y, Gozzini A, Mazurier F, Rovida E, Li S, Dello Sbarba P. Targeting chronic myeloid leukemia stem cells with the hypoxia-inducible factor inhibitor acriflavine. Blood, J Am Soc Hematol. 2017;130(5):655–65. https://doi.org/10.1182/blood-2016-10-745588.

    Article  CAS  Google Scholar 

  16. Li H, Liu L, Zhuang J, Liu C, Zhou C, Yang J, Gao C, Liu G, Sun C. Identification of key candidate targets and pathways for the targeted treatment of leukemia stem cells of chronic myelogenous leukemia using bioinformatics analysis. Mol Genet Genom Med. 2019;7(9):e851. https://doi.org/10.1002/mgg3.851.

    Article  Google Scholar 

  17. Arrigoni E, Del Re M, Galimberti S, Restante G, Rofi E, Crucitta S, Baratè C, Petrini M, Danesi R, Di Paolo A. Concise review: chronic myeloid leukemia: stem cell niche and response to pharmacologic treatment. Stem Cells Transl Med. 2018;7(3):305–14. https://doi.org/10.1002/sctm.17-0175.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kantarjian HM, Hughes TP, Larson RA, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Boquimpani C, Pasquini R, Clark RE, Dubruille V. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia. 2021;35(2):440–53. https://doi.org/10.1038/s41375-020-01111-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radich JP, Hochhaus A, Masszi T, Hellmann A, Stentoft J, Casares MT, García-Gutiérrez JV, Conneally E, Le Coutre PD, Gattermann N, Martino B. Treatment-free remission following frontline nilotinib in patients with chronic phase chronic myeloid leukemia: 5-year update of the ENESTfreedom trial. Leukemia. 2021;35(5):1344–55. https://doi.org/10.1038/s41375-021-01205-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dusetzina SB, Winn AN, Abel GA, Huskamp HA, Keating NL. Cost sharing and adherence to tyrosine kinase inhibitors for patients with chronic myeloid leukemia. J Clin Oncol. 2014;32(4):306–11. https://doi.org/10.1200/JCO.2013.52.9123.

    Article  PubMed  Google Scholar 

  21. Cortes JE, Jiang Q, Wang J, Weng J, Zhu H, Liu X, Hochhaus A, Kim DW, Radich J, Savona M, Martin-Regueira P. Dasatinib vs. imatinib in patients with chronic myeloid leukemia in chronic phase (CML-CP) who have not achieved an optimal response to 3 months of imatinib therapy: the DASCERN randomized study. Leukemia. 2020;34(8):2064–73. https://doi.org/10.1038/s41375-020-0805-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol. 2018;93(3):442–59. https://doi.org/10.1002/ajh.25011.

    Article  PubMed  Google Scholar 

  23. Martins JR, Moraes LN, Cury SS, Dadalto J, Capannacci J, Carvalho RF, Nogueira CR, Hokama NK, Hokama PD. Comparison of microRNA expression profile in chronic myeloid leukemia patients newly diagnosed and treated by allogeneic hematopoietic stem cell transplantation. Front Oncol. 2020;10:1544. https://doi.org/10.3389/fonc.2020.01544.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Goldman JM. Chronic myeloid leukemia: a historical perspective. Semin Hematol. 2010;47(4):302–11. https://doi.org/10.1053/j.seminhematol.2010.07.001.

    Article  CAS  PubMed  Google Scholar 

  25. Wang T, Hao D, Yang S, Ma J, Yang W, Zhu Y, Weng M, An X, Wang X, Li Y, Wu D. miR-211 facilitates platinum chemosensitivity by blocking the DNA damage response (DDR) in ovarian cancer. Cell Death Dis. 2019;10(7):495. https://doi.org/10.1038/s41419-019-1715-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee RC, Feinbaum RL, Ambros V. The C elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54. https://doi.org/10.1016/0092-8674(93)90529-y.

    Article  CAS  PubMed  Google Scholar 

  27. Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee SS. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget. 2016;7(27):42683–97. https://doi.org/10.18632/oncotarget.7977.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Litwińska Z, Machaliński B. miRNAs in chronic myeloid leukemia: small molecules, essential function. Leuk Lymphoma. 2017;58(6):1297–305. https://doi.org/10.1080/10428194.2016.1243676.

    Article  CAS  PubMed  Google Scholar 

  29. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105. https://doi.org/10.1101/gr.082701.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9(2):102–14. https://doi.org/10.1038/nrg2290.

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Fortin K, Mourelatos Z. MicroRNAs: biogenesis and molecular functions. Brain Pathol. 2008;18(1):113–21. https://doi.org/10.1111/j.1750-3639.2007.00121.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Bao W, Liu Y, Wang S, Xu S, Li X, Li Y, Wu S. miR-98-5p contributes to cisplatin resistance in epithelial ovarian cancer by suppressing miR-152 biogenesis via targeting Dicer1. Cell Death Dis. 2018;9(5):447. https://doi.org/10.1038/s41419-018-0390-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meister G. MicroRNA uses a gym to get fit for cuts by Dicer enzyme. Nature. 2023;615:218–9. https://doi.org/10.1038/d41586-023-00478-3.

    Article  CAS  PubMed  Google Scholar 

  34. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 2006;20(16):2202–7. https://doi.org/10.1101/gad.1444406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20(5):515–24. https://doi.org/10.1101/gad.1399806.

    Article  CAS  PubMed  Google Scholar 

  36. Ciafrè SA, Galardi S. microRNAs and RNA-binding proteins: a complex network of interactions and reciprocal regulations in cancer. RNA Biol. 2013;10(6):934–42. https://doi.org/10.4161/rna.24641.

    Article  CAS  PubMed Central  Google Scholar 

  37. Slezak-Prochazka I, Durmus S, Kroesen BJ, van den Berg A. MicroRNAs, macrocontrol: regulation of miRNA processing. RNA. 2010;16(6):1087–95. https://doi.org/10.1261/rna.1804410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banwait JK, Bastola DR. Contribution of bioinformatics prediction in microRNA-based cancer therapeutics. Adv Drug Deliv Rev. 2015;81:94–103. https://doi.org/10.1016/j.addr.2014.10.030.

    Article  CAS  PubMed  Google Scholar 

  39. Fernandes Q. MicroRNA: defining a new niche in Leukemia. Blood Rev. 2017;31(3):129–38. https://doi.org/10.1016/j.blre.2016.11.003.

    Article  CAS  PubMed  Google Scholar 

  40. Alves R, Gonçalves AC, Jorge J, Marques G, Luís D, Ribeiro AB, Freitas-Tavares P, Oliveiros B, Almeida AM, Sarmento-Ribeiro AB. MicroRNA signature refine response prediction in CML. Sci Rep. 2019;9(1):9666. https://doi.org/10.1038/s41598-019-46132-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, McCoy JP Jr, Sloand EM, Kajigaya S, Young NS. Hematopoietic-specific microRNA expression in human cells. Leuk Res. 2006;30(5):643–7. https://doi.org/10.1016/j.leukres.2005.09.001.

    Article  CAS  PubMed  Google Scholar 

  42. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. https://doi.org/10.1038/nature03702.

    Article  CAS  PubMed  Google Scholar 

  43. Hershkovitz-Rokah O, Modai S, Pasmanik-Chor M, Toren A, Shomron N, Raanani P, Shpilberg O, Granot G. Restoration of miR-424 suppresses BCR–ABL activity and sensitizes CML cells to imatinib treatment. Cancer Lett. 2015;360(2):245–56. https://doi.org/10.1016/j.canlet.2015.02.031.

    Article  CAS  PubMed  Google Scholar 

  44. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697. https://doi.org/10.1038/nmeth.3485.

    Article  CAS  PubMed  Google Scholar 

  45. Awan HM, Shah A, Rashid F, Wei S, Chen L, Shan G. Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression. RNA Biol. 2018;15(1):55–61. https://doi.org/10.1080/15476286.2017.1391441.

    Article  PubMed  Google Scholar 

  46. Shibuta T, Honda E, Shiotsu H, Tanaka Y, Vellasamy S, Shiratsuchi M, Umemura T. Imatinib induces demethylation of miR-203 gene: an epigenetic mechanism of anti-tumor effect of imatinib. Leuk Res. 2013;37(10):1278–86. https://doi.org/10.1016/j.leukres.2013.07.019.

    Article  CAS  PubMed  Google Scholar 

  47. Bueno MJ, de Castro IP, de Cedron MG, Santos J, Calin GA, Cigudosa JC, Croce CM, Fernandez-Piqueras J, Malumbres M. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6):496–506. https://doi.org/10.1016/j.ccr.2008.04.018.

    Article  CAS  PubMed  Google Scholar 

  48. Chim CS, Wong KY, Leung CY, Chung LP, Hui PK, Chan SY, Yu L. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies. J Cell Mol Med. 2011;15(12):2760–7. https://doi.org/10.1111/j.1582-4934.2011.01274.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang G, Zhao R, Zhao X, Chen XI, Wang D, Jin Y, Liu XI, Zhao CI, Zhu Y, Ren C, Li M. MicroRNA-181a enhances the chemotherapeutic sensitivity of chronic myeloid leukemia to imatinib. Oncol Lett. 2015;10(5):2835–41. https://doi.org/10.3892/ol.2015.3663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li Y, Wang H, Tao K, Xiao Q, Huang Z, Zhong L, Cao W, Wen J, Feng W. miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Exp Cell Res. 2013;319(8):1094–101. https://doi.org/10.1016/j.yexcr.2013.02.002.

    Article  CAS  PubMed  Google Scholar 

  51. Xishan Z, Ziying L, Jing D, Gang L. MicroRNA-320a acts as a tumor suppressor by targeting BCR/ABL oncogene in chronic myeloid leukemia. Sci Rep. 2015;5:12460. https://doi.org/10.1038/srep12460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304(5670):594–6. https://doi.org/10.1126/science.1097434.

    Article  CAS  PubMed  Google Scholar 

  53. Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q. MicroRNA-196: critical roles and clinical applications in development and cancer. J Cell Mol Med. 2011;15(1):14–23. https://doi.org/10.1111/j.1582-4934.2010.01219.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Zheng W, Song Y, Ma W, Yin H. Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis. PLoS ONE. 2013;8(7):e68442. https://doi.org/10.1371/journal.pone.0068442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu Y, Song Y, Ma W, Zheng W, Yin H. Decreased microRNA-30a levels are associated with enhanced ABL1 and BCR-ABL1 expression in chronic myeloid leukemia. Leuk Res. 2013;37(3):349–56. https://doi.org/10.1016/j.leukres.2012.12.003.

    Article  CAS  PubMed  Google Scholar 

  56. Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, Ganser A, Eder M, Scherr M. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007;109(10):4399–405. https://doi.org/10.1182/blood-2006-09-045104.

    Article  CAS  PubMed  Google Scholar 

  57. Srutova K, Curik N, Burda P, Savvulidi F, Silvestri G, Trotta R, Klamova H, Pecherkova P, Sovova Z, Koblihova J, Stopka T. BCR-ABL1 mediated miR-150 downregulation through MYC contributed to myeloid differentiation block and drug resistance in chronic myeloid leukemia. Haematologica. 2018;103(12):2016. https://doi.org/10.3324/haematol.2018.193086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Suchiita A, Guru SA, Yadav P, Masroor M, Samadhiya A, Bhutani N, Gupta N, Gupta R, Saxena A. miR-486-5p: a prognostic biomarker for chronic myeloid leukemia. ACS Omega. 2021;6(11):7711–8. https://doi.org/10.1021/acsomega.1c00035.

    Article  CAS  Google Scholar 

  59. Perrotti D, Cesi V, Trotta R, Guerzoni C, Santilli G, Campbell K, Iervolino A, Condorelli F, Gambacorti-Passerini C, Caligiuri MA, Calabretta B. BCR-ABL suppresses C/EBPα expression through inhibitory action of hnRNP E2. Nat Genet. 2002;30(1):48–58. https://doi.org/10.1038/ng791.

    Article  CAS  PubMed  Google Scholar 

  60. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell. 2005;123(5):819–31. https://doi.org/10.1016/j.cell.2005.09.023.

    Article  CAS  PubMed  Google Scholar 

  61. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, Becker H. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–65. https://doi.org/10.1016/j.cell.2010.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zheng T, Wang J, Chen X, Liu L. Role of microRNA in anticancer drug resistance. Int J Cancer. 2010;126(1):2–10. https://doi.org/10.1002/ijc.24782.

    Article  CAS  PubMed  Google Scholar 

  63. Yeh CH, Moles R, Nicot C. Clinical significance of microRNAs in chronic and acute human leukemia. Mol Cancer. 2016;15(1):1–6. https://doi.org/10.1186/s12943-016-0518-2.

    Article  CAS  Google Scholar 

  64. Gordon JE, Wong JJ, Rasko JE. Micro RNA s in myeloid malignancies. Br J Haematol. 2013;162(2):162–76. https://doi.org/10.1111/bjh.12364.

    Article  CAS  PubMed  Google Scholar 

  65. Buhagiar A, Borg J, Ayers D. Overview of current microRNA biomarker signatures as potential diagnostic tools for leukaemic conditions. Non-coding RNA Res. 2020;5(1):22–6. https://doi.org/10.1016/j.ncrna.2020.02.001.

    Article  CAS  Google Scholar 

  66. Agirre X, Jiménez-Velasco A, San José-Enériz E, Garate L, Bandrés E, Cordeu L, Aparicio O, Saez B, Navarro G, Vilas-Zornoza A, Pérez-Roger I. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6(12):1830–40. https://doi.org/10.1158/1541-7786.MCR-08-0167.

    Article  CAS  PubMed  Google Scholar 

  67. Fallah P, Amirizadeh N, Poopak B, Toogeh G, Arefian E, Kohram F, Hosseini Rad SM, Kohram M, Teimori Naghadeh H, Soleimani M. Expression pattern of key micro RNA s in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Int J Lab Hematol. 2015;37(4):560–8. https://doi.org/10.1111/ijlh.12351.

    Article  CAS  PubMed  Google Scholar 

  68. Machová Poláková K, Lopotová T, Klamová H, Burda P, Trněný M, Stopka T, Moravcová J. Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer. 2011;10(1):1–3. https://doi.org/10.1186/1476-4598-10-41.

    Article  CAS  Google Scholar 

  69. Flamant S, Ritchie W, Guilhot J, Holst J, Bonnet ML, Chomel JC, Guilhot F, Turhan AG, Rasko JE. Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica. 2010;95(8):1325. https://doi.org/10.3324/haematol.2009.020636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. San José-Enériz E, Román-Gómez J, Jiménez-Velasco A, Garate L, Martin V, Cordeu L, Vilas-Zornoza A, Rodríguez-Otero P, José Calasanz M, Prósper F, Agirre X. MicroRNA expression profiling in Imatinib-resistant Chronic Myeloid Leukemia patients without clinically significant ABL1-mutations. Mol Cancer. 2009;8:1–4. https://doi.org/10.1186/1476-4598-8-69.

    Article  CAS  Google Scholar 

  71. Chen Z, Xie Y, Liu D, Liu P, Li F, Zhang Z, Zhang M, Wang X, Zhang Y, Sun X, Huang Q. (2021) Downregulation of miR-142a contributes to the enhanced anti-apoptotic ability of murine chronic myelogenous leukemia cells. Front Oncol. 2021;11:718731. https://doi.org/10.3389/fonc.2021.718731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Klümper T, Bruckmueller H, Diewock T, Kaehler M, Haenisch S, Pott C, Bruhn O, Cascorbi I. Expression differences of miR-142-5p between treatment-naïve chronic myeloid leukemia patients responding and non-responding to imatinib therapy suggest a link to oncogenic ABL2, SRI, cKIT and MCL1 signaling pathways critical for development of therapy resistance. Exp Hematol Oncol. 2020;9(1):1–5. https://doi.org/10.1186/s40164-020-00183-1.

    Article  CAS  Google Scholar 

  73. Li LM, Luo FJ, Song X. MicroRNA-370–3p inhibits cell proliferation and induces chronic myelogenous leukemia cell apoptosis by suppressing PDLIM1/Wnt/ß-catenin signaling. Neoplasma. 2020. https://doi.org/10.4149/neo_2020_190612N506.

    Article  PubMed  Google Scholar 

  74. Zhou M, Zeng J, Wang X, Guo Q, Huang T, Shen H, Fu Y, Wang L, Jia J, Chen C. MiR-370 sensitizes chronic myeloid leukemia K562 cells to homoharringtonine by targeting Forkhead box M1. J Transl Med. 2013;11(1):1–8. https://doi.org/10.1186/1479-5876-11-265.

    Article  CAS  Google Scholar 

  75. Nie ZY, Liu XJ, Zhan Y, Liu MH, Zhang XY, Li ZY, Lu YQ, Luo JM, Yang L. miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by targeting SIX1. 2019. Biosci Rep. https://doi.org/10.1042/BSR20190150.

  76. Elias MH, Syed Mohamad SF, Abdul Hamid N. A systematic review of candidate miRNAs, its targeted genes and pathways in chronic myeloid leukemia–an integrated bioinformatical analysis. Front Oncol. 2022;12:848199. https://doi.org/10.3389/fonc.2022.848199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu YY, Jiao WY, Li T, Bao YY. MiRNA-409-5p dysregulation promotes imatinib resistance and disease progression in children with chronic myeloid leukemia. Eur Rev Med Pharmacol Sci. 2019. https://doi.org/10.26355/eurrev_201910_19159.

    Article  PubMed  Google Scholar 

  78. Zhao H, Liu F, Jia R, Chang H, Li H, Miao M, Wang H, Yang Z. MiR-570 inhibits cell proliferation and glucose metabolism by targeting IRS1 and IRS2 in human chronic myelogenous leukemia. Iran J Basic Med Sci. 2017;20(5):481. https://doi.org/10.22038/IJBMS.2017.8671.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Xishan Z, Xianjun L, Ziying L, Guangxin C, Gang L. The malignancy suppression role of miR-23a by targeting the BCR/ABL oncogene in chromic myeloid leukemia. Cancer Gene Ther. 2014;21(9):397–404. https://doi.org/10.1038/cgt.2014.44.

    Article  CAS  PubMed  Google Scholar 

  80. Agatheeswaran S, Singh S, Biswas S, Biswas G, Chandra Pattnayak N, Chakraborty S. BCR-ABL mediated repression of miR-223 results in the activation of MEF2C and PTBP2 in chronic myeloid leukemia. Leukemia. 2013;27(7):1578–80. https://doi.org/10.1038/leu.2012.339.

    Article  CAS  PubMed  Google Scholar 

  81. Babashah S, Sadeghizadeh M, Hajifathali A, Tavirani MR, Zomorod MS, Ghadiani M, Soleimani M. Targeting of the signal transducer Smo links microRNA-326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer. 2013;133(3):579–89. https://doi.org/10.1002/ijc.28043.

    Article  CAS  PubMed  Google Scholar 

  82. Wu YY, Lai HF, Huang TC, Chen YG, Ye RH, Chang PY, Lai SW, Chen YC, Lee CH, Liu WN, Dai MS. Aberrantly reduced expression of miR-342-5p contributes to CCND1-associated chronic myeloid leukemia progression and imatinib resistance. Cell Death Dis. 2021;12(10):908. https://doi.org/10.1038/s41419-021-04209-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen D, Wu D, Shao K, Ye B, Huang J, Gao Y. MiR-15a-5p negatively regulates cell survival and metastasis by targeting CXCL10 in chronic myeloid leukemia. Am J Transl Res. 2017;9(9):4308–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gao SM, Xing CY, Chen CQ, Lin SS, Dong PH, Yu FJ. miR-15a and miR-16-1 inhibit the proliferation of leukemic cells by down-regulating WT1 protein level. J Exp Clin Cancer Res. 2011;30(1):1–9. https://doi.org/10.1186/1756-9966-30-110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pan D, Yang W, Zeng Y, Li W, Wang K, Zhao L, Li J, Ye Y, Guo Q. AKR1C3 decreased CML sensitivity to Imatinib in bone marrow microenvironment via dysregulation of miR-379-5p. Cell Signal. 2021;84:110038. https://doi.org/10.1016/j.cellsig.2021.110038.

    Article  CAS  PubMed  Google Scholar 

  86. Li YL, Tang JM, Chen XY, Luo B, Liang GH, Qu Q, Lu ZY. MicroRNA-153-3p enhances the sensitivity of chronic myeloid leukemia cells to imatinib by inhibiting B-cell lymphoma-2-mediated autophagy. Hum Cell. 2020;33:610–8. https://doi.org/10.1007/s13577-020-00367-1.

    Article  CAS  PubMed  Google Scholar 

  87. Soltani I, Bahia W, Farrah A, Mahdhi A, Ferchichi S, Almawi WY. Potential functions of hsa-miR-155-5p and core genes in chronic myeloid leukemia and emerging role in human cancer: a joint bioinformatics analysis. Genomics. 2021;113(4):1647–58. https://doi.org/10.1016/j.ygeno.2021.04.014.

    Article  CAS  PubMed  Google Scholar 

  88. Mahdloo T, Sahami P, Ramezani R, Jafarinia M, Goudarzi H, Babashah S. Up-regulation of miR-155 potentiates CD34+ CML stem/progenitor cells to escape from the growth-inhibitory effects of TGF-ß1 and BMP signaling. EXCLI J. 2021;20:748. https://doi.org/10.17179/excli2021-3404.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Salati S, Salvestrini V, Carretta C, Genovese E, Rontauroli S, Zini R, Rossi C, Ruberti S, Bianchi E, Barbieri G, Curti A. Deregulated expression of miR-29a-3p, miR-494–3p and miR-660–5p affects sensitivity to tyrosine kinase inhibitors in CML leukemic stem cells. Oncotarget. 2017;8(30):49451. https://doi.org/10.18632/oncotarget.17706.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhao L, Li Y, Song X, Zhou H, Li N, Miao Y, Jia L. Upregulation of miR-181c inhibits chemoresistance by targeting ST8SIA4 in chronic myelocytic leukemia. Oncotarget. 2016;7(37):60074. https://doi.org/10.18632/oncotarget.11054.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005;353(17):1793–801. https://doi.org/10.1056/NEJMoa050995.

    Article  CAS  PubMed  Google Scholar 

  92. Hershkovitz Rokah O, Granot G, Ovcharenko A, Modai S, Pasmanik-Chor M, Toren A, Shomron N, Shpilberg O. Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One. 2012;7(4):e35501. https://doi.org/10.1371/journal.pone.0035501.

    Article  CAS  PubMed Central  Google Scholar 

  93. Modi H, McDonald T, Chu S, Yee JK, Forman SJ, Bhatia R. Role of BCR/ABL gene-expression levels in determining the phenotype and imatinib sensitivity of transformed human hematopoietic cells Blood. J Am Soc Hematol. 2007;109(12):5411–21. https://doi.org/10.1182/blood-2006-06-032490.

    Article  CAS  Google Scholar 

  94. Mohamad SF, Elias MH. Potential treatment for chronic myeloid leukemia using microRNA: in silico comparison between plants and human microRNAs in targeting BCR-ABL1 gene. Egypt J Med Hum Genet. 2021;22:1–8. https://doi.org/10.1186/s43042-021-00156-x.

    Article  Google Scholar 

  95. Gao C, Zhou C, Zhuang J, Liu L, Wei J, Liu C, Li H, Sun C. Identification of key candidate genes and miRNA-mRNA target pairs in chronic lymphocytic leukemia by integrated bioinformatics analysis. Mol Med Rep. 2019;19(1):362–74. https://doi.org/10.3892/mmr.2018.9636.

    Article  CAS  PubMed  Google Scholar 

  96. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia. 2004;18(2):189–218. https://doi.org/10.1038/sj.leu.2403241.

    Article  CAS  PubMed  Google Scholar 

  97. Peng C, Chen Y, Yang Z, Zhang H, Osterby L, Rosmarin AG, Li S. PTEN is a tumor suppressor in CML stem cells and BCR-ABL–induced leukemias in mice Blood. J Am Soc Hematol. 2010;115(3):626–35. https://doi.org/10.1182/blood-2009-06-228130.

    Article  CAS  Google Scholar 

  98. Marega M, Piazza RG, Pirola A, Redaelli S, Mogavero A, Iacobucci I, Meneghetti I, Parma M, Pogliani EM, Gambacorti-Passerini C. BCR and BCR-ABL regulation during myeloid differentiation in healthy donors and in chronic phase/blast crisis CML patients. Leukemia. 2010;24(8):1445–9. https://doi.org/10.1038/leu.2010.101.

    Article  CAS  PubMed  Google Scholar 

  99. Zhou M, Zeng J, Wang X, Wang X, Huang T, Fu Y, Sun T, Jia J, Chen C. Histone demethylase RBP2 decreases miR-21 in blast crisis of chronic myeloid leukemia. Oncotarget. 2015;6(2):1249. https://doi.org/10.18632/oncotarget.2859.

    Article  PubMed  Google Scholar 

  100. Ashur-Fabian O, Adamsky K, Trakhtenbrot L, Cohen Y, Raanani P, Hardan I, Nagler A, Rechavi G, Amariglio N. Apaf1 in chronic myelogenous leukemia (CML) progression: reduced Apaf1 expression is correlated with a H179R p53 mutation during clinical blast crisis. Cell Cycle. 2007;6(5):589–94. https://doi.org/10.4161/cc.6.5.3900.

    Article  CAS  PubMed  Google Scholar 

  101. Klemm L, Duy C, Iacobucci I, Kuchen S, von Levetzow G, Feldhahn N, Henke N, Li Z, Hoffmann TK, Kim YM, Hofmann WK. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell. 2009;16(3):232–45. https://doi.org/10.1016/j.ccr.2009.07.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I. Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol. 2013;117:1–38. https://doi.org/10.1016/B978-0-12-410524-9.00001-3.

    Article  CAS  PubMed  Google Scholar 

  103. Zhou M, Yin X, Zheng L, Fu Y, Wang Y, Cui Z, Gao Z, Wang X, Huang T, Jia J, Chen C. miR-181d/RBP2/NF-κB p65 feedback regulation promotes chronic myeloid leukemia blast crisis. Front Oncol. 2021;11:654411. https://doi.org/10.3389/fonc.2021.654411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Karadağ A. Comparison of prognostic miRNA signature in patients with acute and chronic myeloid leukemia by bioinformatic analysis. Med Rec. 2022;4(3):447–53. https://doi.org/10.37990/medr.1118392.

    Article  Google Scholar 

  105. Kotagama K, Chang Y, Mangone M. miRNAs as biomarkers in chronic myelogenous leukemia. Drug Dev Res. 2015;76(6):278–85. https://doi.org/10.1002/ddr.21266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lopotová T, Záčková M, Klamová H, Moravcová J. MicroRNA-451 in chronic myeloid leukemia: miR-451-BCR-ABL regulatory loop? Leuk Res. 2011;35(7):974–7. https://doi.org/10.1016/j.leukres.2011.03.029.

    Article  CAS  PubMed  Google Scholar 

  107. Chim CS, Wan TS, Wong KY, Fung TK, Drexler HG, Wong KF. Methylation of miR-34a, miR-34b/c, miR-124-1 and miR-203 in Ph-negative myeloproliferative neoplasms. J Transl Med. 2011;9:197. https://doi.org/10.1186/1479-5876-9-197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sharifi H, Jafari Najaf Abadi MH, Razi E, Mousavi N, Morovati H, Sarvizadeh M, Taghizadeh M. MicroRNAs and response to therapy in leukemia. J Cell Biochem. 2019;120(9):14233–46. https://doi.org/10.1002/jcb.28892.

    Article  CAS  PubMed  Google Scholar 

  109. Navabi A, Akbari B, Abdalsamadi M, Naseri S. The role of microRNAs in the development, progression and drug resistance of chronic myeloid leukemia and their potential clinical significance. Life Sci. 2022;296:120437. https://doi.org/10.1016/j.lfs.2022.120437.

    Article  CAS  PubMed  Google Scholar 

  110. Di Stefano C, Mirone G, Perna S, Marfe G. The roles of microRNAs in the pathogenesis and drug resistance of chronic myelogenous leukemia. Oncol Rep. 2016;35(2):614–24. https://doi.org/10.3892/or.2015.4456.

    Article  CAS  PubMed  Google Scholar 

  111. Xu C, Fu H, Gao L, Wang L, Wang W, Li J, Yu L. BCR-ABL/GATA1/miR-138 mini circuitry contributes to the leukemogenesis of chronic myeloid leukemia. Oncogene. 2014;33(1):44–54. https://doi.org/10.1038/onc.2012.557.

    Article  CAS  PubMed  Google Scholar 

  112. Turrini E, Haenisch S, Laechelt S, Diewock T, Bruhn O, Cascorbi I. MicroRNA profiling in K-562 cells under imatinib treatment: influence of miR-212 and miR-328 on ABCG2 expression. Pharmacogenet Genomics. 2012;22(3):198–205. https://doi.org/10.1097/FPC.0b013e328350012b.

    Article  CAS  PubMed  Google Scholar 

  113. Bai H, Cao Z, Deng C, Zhou L, Wang C. miR-181a sensitizes resistant leukaemia HL-60/Ara-C cells to Ara-C by inducing apoptosis. J Cancer Res Clin Oncol. 2012;138(4):595–602. https://doi.org/10.1007/s00432-011-1137-3.

    Article  CAS  PubMed  Google Scholar 

  114. Peixoto da Silva S, Caires HR, Bergantim R, Guimarães JE, Vasconcelos MH. miRNAs mediated drug resistance in hematological malignancies. Semin Cancer Biol. 2022;83:283–302. https://doi.org/10.1016/j.semcancer.2021.03.014.

    Article  CAS  PubMed  Google Scholar 

  115. Li H, Hui L, Xu W. miR-181a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2. Acta Biochim Biophys Sin. 2012;44(3):269–77. https://doi.org/10.1093/abbs/gmr128.

    Article  CAS  PubMed  Google Scholar 

  116. Poláková KM, Lopotová T, Klamová H, Moravcová J. Differential expression of miRNAs during the course of chronic myeloid leukemia. Blood. 2008;112:s1082. https://doi.org/10.1182/blood.V112.11.1082.1082.

    Article  Google Scholar 

Download references

Acknowledgements

MV acknowledges the support he received from the Banaras Hindu University, Varanasi, under the IOE incentive grant in writing this manuscript. MB and SA are grateful to BHU for the award of the UGC Non-NET fellowship.

Funding

No funding was received for the writing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MV conceived and designed this review. MB and SA collected the data and prepared the first draft of the manuscript. Further, the manuscript was improved iteratively by MB, SA, and MV. Authors have read and approved the final manuscript.

Corresponding author

Correspondence to Malkhey Verma.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Ethical approval

This review article does not need ethical approval.

Informed consent

Formal consent is not required for this type of study.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, M., Ansari, S. & Verma, M. Role of miRNAs to control the progression of Chronic Myeloid Leukemia by their expression levels. Med Oncol 41, 55 (2024). https://doi.org/10.1007/s12032-023-02278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02278-1

Keywords

Navigation