Skip to main content

Advertisement

Log in

Glucosinolates in cancer prevention and treatment: experimental and clinical evidence

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Glucosinolates are naturally occurring β-d-thioglucosides that mainly exist in the Brassicaceae family. The enzyme myrosinase hydrolyzes glucosinolates to form isothiocyanates, which are chemical protectors. Phenethyl isothiocyanate, sulforaphane, and benzyl isothiocyanate are potential isothiocyanate with efficient anti-cancer effects as a protective or treatment agent. Glucosinolate metabolites exert the cancer-preventive activity through different mechanisms, including induction of the Nrf2 transcription factor, inhibition of expression of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β), induction of apoptosis through inhibiting phase I enzymes and inducting phase II enzymes, interruption of caspase pathways, STAT1/STAT2, inhibition of sulfotransferases. Moreover, glucosinolates and their metabolites are effective in cancer treatment by inhibiting angiogenesis, upregulating natural killers, increasing expression of p53, p21, caspase 3 and 9, and modulating NF-κB. Despite the mentioned cancer-preventing effects, some isothiocyanates can increase the risk of tumors. So, further studies are needed to obtain an accurate and effective dose for each glucosinolates to treat different types of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. Antioxidant Response Element.

References

  1. Blažević I, et al. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochem. 2020;169: 112100. https://doi.org/10.1016/j.phytochem.2019.112100.

    Article  CAS  Google Scholar 

  2. Ishida M, et al. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables. Breed Sci. 2014;64(1):48–59. https://doi.org/10.1270/jsbbs.64.48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Possenti M, et al. Glucosinolates in food. Berlin: Springer; 2017. p. 87–132.

    Book  Google Scholar 

  4. Barba FJ, et al. Bioavailability of glucosinolates and their breakdown products: impact of processing. Front Nutr. 2016;3:24. https://doi.org/10.3389/fnut.2016.00024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bheemreddy RM, Jeffery EHJ. The metabolic fate of purified glucoraphanin in F344 rats. J Agric Food Chem. 2007;55(8):2861–6. https://doi.org/10.1021/jf0633544.

    Article  PubMed  CAS  Google Scholar 

  6. Angelino D, et al. Myrosinase-dependent and–independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Front Plant Sci. 2015;6:831. https://doi.org/10.3389/fpls.2015.00831.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grosser K, van Dam NMJJ. A straightforward method for glucosinolate extraction and analysis with high-pressure liquid chromatography (HPLC). J Vis Exp. 2017;121: e55425. https://doi.org/10.3791/55425.

    Article  CAS  Google Scholar 

  8. Blažević IJAJB. Glucosinolates: novel sources and biological potential, vol. 1. Berlin: Springer; 2014.

    Google Scholar 

  9. Palli D, et al. O6-alkylguanines, dietary N-nitroso compounds, and their precursors in gastric cancer. Nutr Cancer. 2001;39(1):42–9. https://doi.org/10.1207/S15327914nc391_6.

    Article  PubMed  CAS  Google Scholar 

  10. Ward MH, et al. Risk of adenocarcinoma of the stomach and esophagus with meat cooking method and doneness preference. J Cancer. 1997;71(1):14–9. https://doi.org/10.1002/(SICI)1097-0215(19970328)71:1%3c14::AID-IJC4%3e3.0.CO;2-6.

    Article  CAS  Google Scholar 

  11. Lee S-A, et al. Original article effect of diet and Helicobacter pylori infection to the risk of early gastric cancer. J Epidemiol. 2003;13(3):162–8. https://doi.org/10.2188/jea.13.162.

    Article  PubMed  Google Scholar 

  12. Fahey JW, Zalcmann AT, Talalay PJP. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochem. 2001;56(1):5–51. https://doi.org/10.1016/S0031-9422(00)00316-2.

    Article  CAS  Google Scholar 

  13. Fahey JW, Zhang Y, Talalay PJP. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci. 1997;94(19):10367–72. https://doi.org/10.1073/pnas.94.19.1036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hecht SSJD. Inhibition of carcinogenesis by isothiocyanates. Drug Metab Rev. 2000;32(3–4):395–411. https://doi.org/10.1081/DMR-100102342.

    Article  PubMed  CAS  Google Scholar 

  15. Bonnesen C, Eggleston IM, Hayes JCR. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Epidemiol Prevent. 2001;61(16):6120–30.

    CAS  Google Scholar 

  16. Dahl EL, Mulcahy TS. Cell-type specific differences in glutamate cysteine ligase transcriptional regulation demonstrate independent subunit control. Toxicol Sci. 2001;61(2):265–72.

    Article  PubMed  CAS  Google Scholar 

  17. Scharf G, et al. Enhancement of glutathione and γ-glutamylcysteine synthetase, the rate limiting enzyme of glutathione synthesis, by chemoprotective plant-derived food and beverage components in the human hepatoma cell line HepG2. Biochim Biophys Acta. 2003;45(1):74–83.

    CAS  Google Scholar 

  18. Zhang J, et al. Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis. 2003;24(3):497–503.

    Article  PubMed  CAS  Google Scholar 

  19. Prestera T, et al. Parallel induction of heme oxygenase-1 and chemoprotective phase 2 enzymes by electrophiles and antioxidants: regulation by upstream antioxidant-responsive elements (ARE). Mol Med. 1995;1(7):827–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dinkova-Kostova AT, Talalay RB. Persuasive evidence that quinone reductase type 1 (DT diaphorase) protects cells against the toxicity of electrophiles and reactive forms of oxygen. Free Radical Biol Med. 2000;29(3–4):231–40.

    Article  CAS  Google Scholar 

  21. Mustacich D, Powis GJBJ. Thioredoxin Reductase. 2000;346(1):1–8.

    CAS  Google Scholar 

  22. Fahey JW, Talalay PJF, Toxicology C. Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes. Food Chem Toxicol. 1999;37(9–10):973–9. https://doi.org/10.1016/S0278-6915(99)00082-4.

    Article  PubMed  CAS  Google Scholar 

  23. Ramos-Gomez M, et al. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci. 2001;98(6):3410–5. https://doi.org/10.1073/pnas.051618798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Calabrese EJ, Baldwin LA. Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol. 2003;43(1):175–97. https://doi.org/10.1146/annurev.pharmtox.43.100901.140223.

    Article  PubMed  CAS  Google Scholar 

  25. Calabrese EJ, Mattson MPJ. Hormesis provides a generalized quantitative estimate of biological plasticity. J Cell Commun Signal. 2011;5(1):25–38. https://doi.org/10.1007/s12079-011-0119-1.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Calabrese EJ, Kozumbo JPR. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res. 2021;163:105283. https://doi.org/10.1016/j.phrs.2020.105283.

    Article  PubMed  CAS  Google Scholar 

  27. Fox JG, et al. High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances Helicobacter pylori colonization in C57BL/6 mice. Cancer Res. 1999;59(19):4823–8.

    PubMed  CAS  Google Scholar 

  28. Yanaka A, et al. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev. 2009;2(4):353–60. https://doi.org/10.1158/1940-6207.CAPR-08-0192.

    Article  CAS  Google Scholar 

  29. Yang L, Palliyaguru DL, Kensler TW. Frugal chemoprevention: targeting Nrf2 with foods rich in sulforaphane. In: Seminars in oncology. Amsterdam: Elsevier; 2016.

    Google Scholar 

  30. Leone A, et al. Sulforaphane for the chemoprevention of bladder cancer: molecular mechanism targeted approach. Oncotarget. 2017;8(21):35412. https://doi.org/10.18632/oncotarget.16015.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Talalay P, Fahey JWJ. Phytochemicals from cruciferous plants protect against cancer by modulating carcinogen metabolism. J Nutr. 2001;131(11):3027S-3033S. https://doi.org/10.1093/jn/131.11.3027S.

    Article  PubMed  CAS  Google Scholar 

  32. Keum Y-S, et al. Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm Res. 2009;26(10):2324–31. https://doi.org/10.1007/s11095-009-9948-5.

    Article  PubMed  CAS  Google Scholar 

  33. Singh AV, et al. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis. 2004;25(1):83–90. https://doi.org/10.1093/carcin/bgg178.

    Article  PubMed  CAS  Google Scholar 

  34. Abbaoui B, et al. Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, metabolism, and interconversion. Mol Nutr Food Res. 2012;56(11):1675–87. https://doi.org/10.1002/mnfr.201200276.

    Article  PubMed  CAS  Google Scholar 

  35. Munday R, et al. Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res. 2008;68(5):1593–600. https://doi.org/10.1158/0008-5472.CAN-07-5009.

    Article  PubMed  CAS  Google Scholar 

  36. Singh SV, et al. Sulforaphane inhibits prostate carcinogenesis and pulmonary metastasis in TRAMP mice in association with increased cytotoxicity of natural killer cells. Cancer Res. 2009;69(5):2117–25. https://doi.org/10.1158/0008-5472.CAN-08-3502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Vyas AR, et al. Chemoprevention of prostate cancer by d, l-sulforaphane is augmented by pharmacological inhibition of autophagy. Cancer Res. 2013;73(19):5985–95. https://doi.org/10.1158/0008-5472.CAN-13-0755.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Herman-Antosiewicz A, Johnson DE, Singh CR. Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res. 2006;66(11):5828–35. https://doi.org/10.1158/0008-5472.CAN-06-0139.

    Article  PubMed  CAS  Google Scholar 

  39. Cornblatt BS, et al. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis. 2007;28(7):1485–90. https://doi.org/10.1093/carcin/bgm049.

    Article  PubMed  CAS  Google Scholar 

  40. Bauman JE, et al. Prevention of carcinogen-induced oral cancer by sulforaphane. Cancer Prev Res (Phila). 2016;9(7):547–57. https://doi.org/10.1158/1940-6207.Capr-15-0290.

    Article  PubMed  CAS  Google Scholar 

  41. Cheenpracha S, et al. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits. Bioorg Med Chem. 2010;18(17):6598–602. https://doi.org/10.1016/j.bmc.2010.03.057.

    Article  PubMed  CAS  Google Scholar 

  42. Nigro MML, et al. In vivo antigenotoxic activity of Diplotaxis tenuifolia against cyclophosphamide-induced DNA damage: relevance of modulation of hepatic ABC efflux transporters. Mutat Res Genet Toxicol Environ Mutagen. 2018;836:72–8. https://doi.org/10.1016/j.mrgentox.2018.06.006.

    Article  CAS  Google Scholar 

  43. Michl C, et al. The chemopreventive phytochemical moringin isolated from Moringa oleifera seeds inhibits JAK/STAT signaling. PLoS ONE. 2016;11(6): e0157430. https://doi.org/10.1371/journal.pone.0157430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kulisic-Bilusic T, et al. The anticarcinogenic potential of essential oil and aqueous infusion from caper (Capparis spinosa L.). Food Chem Toxicol. 2012;132(1):261–7. https://doi.org/10.1016/j.foodchem.2011.10.074.

    Article  CAS  Google Scholar 

  45. Cirmi S, et al. Moringin from Moringa oleifera seeds inhibits growth, arrests cell-cycle, and induces apoptosis of SH-SY5Y human neuroblastoma cells through the modulation of NF-κB and apoptotic related factors. Int J Mol Sci. 2019;20(8):1930. https://doi.org/10.3390/ijms20081930.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Blažević I, et al. Antimicrobial and cytotoxic activities of Lepidium latifolium L. Hydrodistillate, extract and its major sulfur volatile allyl isothiocyanate. Biochem Mol Biol. 2019;16(4):e1800661–4. https://doi.org/10.1002/cbdv.201800661.

    Article  CAS  Google Scholar 

  47. London SJ, et al. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: a prospective study of men in Shanghai. China. 2000;356(9231):724–9.

    CAS  Google Scholar 

  48. Spitz MR, et al. Dietary intake of isothiocyanates: evidence of a joint effect with glutathione S-transferase polymorphisms in lung cancer risk. 2000;9(10):1017–20.

    CAS  Google Scholar 

  49. Fowke JH, et al. Urinary isothiocyanate levels, brassica, and human breast cancer. Cancer Res. 2003;63(14):3980–6.

    PubMed  CAS  Google Scholar 

  50. Seow A, et al. Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis. 2002;23(12):2055–61.

    Article  PubMed  CAS  Google Scholar 

  51. Traka MH, et al. Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention—results from the effect of sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial. Am J Clin Nutr. 2019;109(4):1133–44. https://doi.org/10.1093/ajcn/nqz012.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Budda S, et al. Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pac J Cancer Prev. 2011;12(12):3221–8.

    PubMed  Google Scholar 

  53. Gao X, et al. Chemopreventive agent 3, 3′-diindolylmethane inhibits MDM2 in colorectal cancer cells. Int J Mol Sci. 2020;21(13):4642. https://doi.org/10.3390/ijms21134642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Justin S, et al. Chronic sulforaphane administration inhibits resistance to the mTOR-inhibitor everolimus in bladder cancer cells. Int J Mol Sci. 2020;21(11):4026. https://doi.org/10.3390/ijms21114026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Krajka-Kuźniak V, et al. Combination of xanthohumol and phenethyl isothiocyanate inhibits NF-κB and activates Nrf2 in pancreatic cancer cells. In Vitro Toxicol. 2020;65: 104799. https://doi.org/10.1016/j.tiv.2020.104799.

    Article  CAS  Google Scholar 

  56. Hanlon N, et al. Repeated intake of broccoli does not lead to higher plasma levels of sulforaphane in human volunteers. Cancer Lett. 2009;284(1):15–20. https://doi.org/10.1016/j.canlet.2009.04.004.

    Article  PubMed  CAS  Google Scholar 

  57. Ramos-Bueno R, et al. Phytochemical composition and antitumor activities of new salad greens: Rucola (Diplotaxis tenuifolia) and corn salad (Valerianella locusta). Plant Foods Hum Nutr. 2016;71:197–203. https://doi.org/10.1007/s11130-016-0544-7.

    Article  PubMed  CAS  Google Scholar 

  58. Hammad HM, et al. Effect of Salvadora persica Linn root aqueous extract on oral epithelial dysplasia and oral cancer cell lines. Trop J Pharm Res. 2019;18(12):2591–6.

    CAS  Google Scholar 

  59. Egner PA, et al. Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res (Phila). 2014;7(8):813–23. https://doi.org/10.1158/1940-6207.CAPR-14-0103.

    Article  PubMed  CAS  Google Scholar 

  60. Chen JG, et al. Dose-dependent detoxication of the airborne pollutant benzene in a randomized trial of broccoli sprout beverage in Qidong. China Am J Clin Nutr. 2019;110(3):675–84. https://doi.org/10.1093/ajcn/nqz122.

    Article  PubMed  Google Scholar 

  61. Yuan JM, et al. 2-Phenethyl isothiocyanate, glutathione S-transferase M1 and T1 polymorphisms, and detoxification of volatile organic carcinogens and toxicants in tobacco smoke. Cancer Prev Res (Phila). 2016;9(7):598–606. https://doi.org/10.1158/1940-6207.Capr-16-0032.

    Article  PubMed  CAS  Google Scholar 

  62. Yuan JM, et al. Clinical trial of 2-phenethyl isothiocyanate as an inhibitor of metabolic activation of a tobacco-specific lung carcinogen in cigarette smokers. Cancer Prev Res (Phila). 2016;9(5):396–405. https://doi.org/10.1158/1940-6207.Capr-15-0380.

    Article  PubMed  CAS  Google Scholar 

  63. Kensler TW, et al. Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People’s Republic of China. Cancer Epidemiol Biomarkers Prev. 2005;14(11):2605–13. https://doi.org/10.1158/1055-9965.EPI-05-0368.

    Article  PubMed  CAS  Google Scholar 

  64. Kensler TW, et al. Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong. China Carcinogenesis. 2012;33(1):101–7. https://doi.org/10.1093/carcin/bgr229.

    Article  PubMed  CAS  Google Scholar 

  65. Traka M, et al. Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate. PLoS ONE. 2008;3(7): e2568. https://doi.org/10.1371/journal.pone.0002568.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gasper AV, et al. Consuming broccoli does not induce genes associated with xenobiotic metabolism and cell cycle control in human gastric mucosa. J Nutr. 2007;137(7):1718–24. https://doi.org/10.1093/jn/137.7.1718.

    Article  PubMed  CAS  Google Scholar 

  67. Holmgren LJB, Communications BR. Horizontal gene transfer: you are what you eat. Biochem Biophys Res Commun. 2010;396(1):147–51. https://doi.org/10.1016/j.bbrc.2010.04.026.

    Article  PubMed  CAS  Google Scholar 

  68. Meyer Y, et al. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet. 2009;43:335–67. https://doi.org/10.1146/annurev-genet-102108-134201.

    Article  PubMed  CAS  Google Scholar 

  69. Lillig CH. Thioredoxin and related molecules–from biology to health and disease. Antioxid Redox Sign. 2007;9:25–47. https://doi.org/10.1089/ars.2007.9.25.

    Article  CAS  Google Scholar 

  70. Lozanovski VJ, et al. Pilot study evaluating broccoli sprouts in advanced pancreatic cancer (POUDER trial) - study protocol for a randomized controlled trial. Trials. 2014;15:204. https://doi.org/10.1186/1745-6215-15-204.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Annema N, et al. Fruit and vegetable consumption and the risk of proximal colon, distal colon, and rectal cancers in a case-control study in Western Australia. J Am Diet Assoc. 2011;111(10):1479–90. https://doi.org/10.1016/j.jada.2011.07.008.

    Article  PubMed  Google Scholar 

  72. Steinbrecher A, et al. Dietary glucosinolate intake and risk of prostate cancer in the EPIC-Heidelberg cohort study. Int J Cancer. 2009;125(9):2179–86. https://doi.org/10.1002/ijc.24555.

    Article  PubMed  CAS  Google Scholar 

  73. Hoelzl C, et al. Consumption of Brussels sprouts protects peripheral human lymphocytes against 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP) and oxidative DNA-damage: results of a controlled human intervention trial. Mol Nutr Food Res. 2008;52(3):330–41. https://doi.org/10.1002/mnfr.200700406.

    Article  PubMed  CAS  Google Scholar 

  74. Lee S-A, et al. Cruciferous vegetables, the GSTP1 Ile 105 Val genetic polymorphism, and breast cancer risk. Am J Clin Nutr. 2008;87(3):753–60. https://doi.org/10.1093/ajcn/87.3.753.

    Article  PubMed  CAS  Google Scholar 

  75. Nijhoff WA, et al. Effects of consumption of Brussels sprouts on intestinal and lymphocytic glutathione S-transferases in humans. Carcinogenesis. 1995;16(9):2125–8. https://doi.org/10.1093/carcin/16.9.2125.

    Article  PubMed  CAS  Google Scholar 

  76. Verhagen H, et al. Effect of Brussels sprouts on oxidative DNA-damage in man. Cancer Lett. 1997;114(1–2):127–30. https://doi.org/10.1016/S0304-3835(97)04641-7.

    Article  PubMed  CAS  Google Scholar 

  77. Verhagen H, et al. Reduction of oxidative DNA-damage in humans by Brussels sprouts. Carcinogenesis. 1995;16(4):969–70. https://doi.org/10.1093/carcin/16.4.969.

    Article  PubMed  CAS  Google Scholar 

  78. Lozanovski VJ, et al. Broccoli sprout supplementation in patients with advanced pancreatic cancer is difficult despite positive effects—results from the POUDER pilot study. Invest New Drugs. 2020;38(3):776–84. https://doi.org/10.1007/s10637-019-00826-z.

    Article  PubMed  CAS  Google Scholar 

  79. Tang L, Zhang N. Dietary isothiocyanates inhibit the growth of human bladder carcinoma cells. J Nutr. 2004;134(8):2004–10. https://doi.org/10.1093/jn/134.8.2004.

    Article  PubMed  CAS  Google Scholar 

  80. Boreddy SR, Pramanik KC, Srivastava SKJ. Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3K/AKT/FOXO pathway. Clin Cancer Res. 2011;17(7):1784–95. https://doi.org/10.1158/1078-0432.CCR-10-1891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Sahu RP, Srivastava SKJJ. The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J Natl Cancer Inst. 2009;101(3):176–93. https://doi.org/10.1093/jnci/djn470.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Palliyaguru DL, et al. Sulforaphane diminishes the formation of mammary tumors in rats exposed to 17β-estradiol. Nutrients. 2020;12(8):2282. https://doi.org/10.3390/nu12082282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Thejass P, Kuttan GJNU. Allyl isothiocyanate (AITC) and phenyl isothiocyanate (PITC) inhibit tumour-specific angiogenesis by downregulating nitric oxide (NO) and tumour necrosis factor-α (TNF-α) production. Nitric Oxide. 2007;16(2):247–57. https://doi.org/10.1016/j.niox.2006.09.006.

    Article  PubMed  CAS  Google Scholar 

  84. Amin PJ, Shankar BS. Sulforaphane induces ROS mediated induction of NKG2D ligands in human cancer cell lines and enhances susceptibility to NK cell mediated lysis. Life Sci. 2015;126:19–27. https://doi.org/10.1016/j.lfs.2015.01.026.

    Article  PubMed  CAS  Google Scholar 

  85. Bassan P, et al. Extraction, profiling and bioactivity analysis of volatile glucosinolates present in oil extract of Brassica juncea var. raya. Physiol Mol Biol Plants. 2018;24(3):399–409. https://doi.org/10.1007/s12298-018-0509-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Popović M, et al. Biological effects of glucosinolate degradation products from horseradish: a horse that wins the race. Biomolecules. 2020;10(2):343. https://doi.org/10.3390/biom10020343.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Tahata S, et al. Evaluation of biodistribution of sulforaphane after administration of oral broccoli sprout extract in melanoma patients with multiple atypical nevi. Cancer Prev Res (Phila). 2018;11(7):429–38. https://doi.org/10.1158/1940-6207.Capr-17-0268.

    Article  PubMed  CAS  Google Scholar 

  88. Alumkal JJ, et al. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Invest New Drugs. 2015;33(2):480–9. https://doi.org/10.1007/s10637-014-0189-z.

    Article  PubMed  CAS  Google Scholar 

  89. Al-Gendy AA, et al. Glucosinolates profile, volatile constituents, antimicrobial, and cytotoxic activities of Lobularia libyca. Pharm Biol. 2016;54(12):3257–63. https://doi.org/10.1080/13880209.2016.1223146.

    Article  PubMed  CAS  Google Scholar 

  90. Tan MCS, et al. Determining the apoptotic-inducing property of isothiocyanates extracted from three cultivars of Raphanus sativus Linn. using the comet assay. J Appl Pharm Sci. 2017;7(9):044–51. https://doi.org/10.7324/JAPS.2017.70906.

    Article  CAS  Google Scholar 

  91. Hedrich WD, Wang HJPR. Friend or foe: xenobiotic activation of Nrf2 in disease control and cardioprotection. Pharm Res. 2021;38(2):213–41. https://doi.org/10.1007/s11095-021-02997-y.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NO and ZT contributed to the literature search, data extraction, and manuscript drafting. SH contributed to revising the draft. SMN and RR contributed to the work's conception and design and revising the draft.

Corresponding author

Correspondence to Roja Rahimi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orouji, N., Asl, S.K., Taghipour, Z. et al. Glucosinolates in cancer prevention and treatment: experimental and clinical evidence. Med Oncol 40, 344 (2023). https://doi.org/10.1007/s12032-023-02211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02211-6

Keywords

Navigation