Skip to main content

Advertisement

Log in

A multitier virtual screening of antagonists targeting PD-1/PD-L1 interface for the management of triple-negative breast cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Immunotherapies are promising therapeutic options for the management of triple-negative breast cancer because of its high mutation rate and genomic instability. Of note, the blockade of the immune checkpoint protein PD-1 and its ligand PD-L1 has been proven to be an efficient and potent strategy to combat triple-negative breast cancer. To date, various anti-PD-1/anti-PD-L1 antibodies have been approved. However, the intrinsic constraints of these therapeutic antibodies significantly limit their application, making small molecules a potentially significant option for PD-1/PD-L1 inhibition. In light of this, the current study aims to use a high-throughput virtual screening technique to identify potential repurposed candidates as PD-L1 inhibitors. Thus, the present study explored binding efficiency of 2509 FDA-approved compounds retrieved from the drug bank database against PD-L1 protein. The binding affinity of the compounds was determined using the glide XP docking programme. Furthermore, prime-MM/GBSA, DFT calculations, and RF score were used to precisely re-score the binding free energy of the docked complexes. In addition, the ADME and toxicity profiles for the lead compounds were also examined to address PK/PD characteristics. Altogether, the screening process identified three molecules, namely DB01238, DB06016 and DB01167 as potential therapeutics for the PD-L1 protein. To conclude, a molecular dynamic simulation of 100 ns was run to characterise the stability and inhibitory action of the three lead compounds. The results from the simulation study confirm the robust structural and thermodynamic stability of DB01238 than other investigated molecules. Thus, our findings hypothesize that DB01238 could serve as potential PD-L1 inhibitor in the near future for triple-negative breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2:
Fig. 3:
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data to support the conclusions have been either provided or are otherwise publicly available.

Abbreviations

PD-1:

Programmed cell death 1

PD-L1:

Programmed cell death ligand 1

BMS:

Bristol-Myers Squibb

TME:

Tumour micro environment

TIL:

Tumour infiltrating lymphocytes

TMB:

Tumour mutation burden

ADME:

Absorption, distribution, metabolism and excretion

DFT:

Density functional theory

FMO:

Frontier molecular orbitals

PF/PD:

Pharmacokinetics/pharmacodynamics

RMSD:

Root mean square deviation

RMSF:

Root mean square fluctuation

FEL:

Free energy landscape

References

  1. Korlimarla A, Hari PS, Prabhu J, Ragulan C, Patil Y, Snijesh VP, Desai K, Mathews A, Appachu S, Diwakar RB, Srinath BS. Comprehensive characterization of immune landscape of Indian and Western triple negative breast cancers. Transl Oncol. 2022. https://doi.org/10.1016/j.tranon.2022.101511.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Loizides S, Constantinidou A. Triple negative breast cancer: Immunogenicity, tumor microenvironment, and immunotherapy. Front Genet. 2023. https://doi.org/10.3389/fgene.2022.1095839.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qiu D, Zhang G, Yan X, Xiao X, Ma X, Lin S, Wu J, Li X, Wang W, Liu J, Ma Y. Prospects of immunotherapy for triple-negative breast cancer. Front Oncol. 2022. https://doi.org/10.3389/fonc.2021.797092.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yi H, Li Y, Tan Y, Fu S, Tang F, Deng X. Immune checkpoint inhibition for triple-negative breast cancer: current landscape and future perspectives. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.648139.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Luo C, Wang P, He S, Zhu J, Shi Y, Wang J. Progress and prospect of immunotherapy for triple-negative breast cancer. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.919072.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang F, Ye W, Wang S, He Y, Zhong H, Wang Y, Zhu Y, Han J, Bing Z, Ji S, Liu H. Discovery of a new inhibitor targeting PD-L1 for cancer immunotherapy. Neoplasia. 2021. https://doi.org/10.1016/j.neo.2021.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, Chawla A. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014. https://doi.org/10.1158/2326-6066.CIR-13-0127.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bharadwa KR, Dasgupta K, Narayana SM, Ramachandra C, Babu SM, Rangarajan A, Kumar RV. PD-1 and PD-L1 expression in Indian women with breast cancer. Eur J Breast Health. 2022. https://doi.org/10.4274/ejbh.galenos.2021.2021-5-2.

    Article  PubMed  Google Scholar 

  9. Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Henschel V, Molinero L, Chui SY, Maiya V. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020. https://doi.org/10.1016/S1470-2045(19)30689-8.

    Article  PubMed  Google Scholar 

  10. Emens LA, Adams S, Barrios CH, Diéras V, Iwata H, Loi S, Rugo HS, Schneeweiss A, Winer EP, Patel S, Henschel V. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann Oncol. 2021. https://doi.org/10.1016/j.annonc.2021.05.355.

    Article  PubMed  Google Scholar 

  11. Wang Y, Guo H, Feng Z, Wang S, Wang Y, He Q, Li G, Lin W, Xie XQ, Lin Z. PD-1-targeted discovery of peptide inhibitors by virtual screening, molecular dynamics simulation, and surface plasmon resonance. Molecules. 2019. https://doi.org/10.3390/molecules24203784.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zak KM, Grudnik P, Guzik K, Zieba BJ, Musielak B, Dömling A, Dubin G, Holak TA. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget. 2016. https://doi.org/10.18632/oncotarget.8730.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Skalniak L, Zak KM, Guzik K, Magiera K, Musielak B, Pachota M, Szelazek B, Kocik J, Grudnik P, Tomala M, Krzanik S. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.20050.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Donnelly DJ, Smith RA, Morin P, Lipovšek D, Gokemeijer J, Cohen D, Lafont V, Tran T, Cole EL, Wright M, Kim J. Synthesis and biologic evaluation of a novel 18F-labeled adnectin as a PET radioligand for imaging PD-L1 expression. J Nucl Med. 2018. https://doi.org/10.2967/jnumed.117.199596.

    Article  PubMed  Google Scholar 

  15. Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J, Cha JH, Xia W, Chan LC, Kim T, Chang SS. Eradication of triple-negative breast cancer cells by targeting glycosylated PD-L1. Cancer Cell. 2018. https://doi.org/10.1016/j.ccell.2018.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guzik K, Zak KM, Grudnik P, Magiera K, Musielak B, Torner R, Skalniak L, Domling A, Dubin G, Holak TA. Small-molecule inhibitors of the programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) interaction via transiently induced protein states and dimerization of PD-L1. J Med Chem. 2017. https://doi.org/10.1021/acs.jmedchem.7b00293.

    Article  PubMed  Google Scholar 

  17. Wu X, Meng Y, Liu L, Gong G, Zhang H, Hou Y, Liu C, Wu D, Qin M. Insights into non-peptide small-molecule inhibitors of the PD-1/PD-L1 interaction: development and perspective. Bioorg Med Chem. 2021. https://doi.org/10.1016/j.bmc.2021.116038.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hussain A, Hussain A, Sabnam N, Verma CK, Shrivastava N. Insilico exploration of the potential inhibitory activity of DrugBank compounds against CDK7 kinase using structure-based virtual screening, molecular docking, and dynamics simulation approach. Arab J Chem. 2023. https://doi.org/10.1016/j.arabjc.2022.104460.

    Article  Google Scholar 

  19. Mittal L, Tonk RK, Awasthi A, Asthana S. Targeting cryptic-orthosteric site of PD-L1 for inhibitor identification using structure-guided approach. Arch Biochem Biophys. 2021. https://doi.org/10.1016/j.abb.2021.109059.

    Article  PubMed  Google Scholar 

  20. James N, Shanthi V, Ramanathan K. Density functional theory and molecular simulation studies for prioritizing anaplastic lymphoma kinase inhibitors. Biotechnol Appl Biochem. 2020. https://doi.org/10.1007/s12010-019-03156-1.

    Article  PubMed  Google Scholar 

  21. Sandor M, Kiss R, Keserű GM. Virtual fragment docking by Glide: a validation study on 190 protein−fragment complexes. J Chem Inf Model. 2010. https://doi.org/10.1021/ci1000407.

    Article  PubMed  Google Scholar 

  22. Jang C, Yadav DK, Subedi L, Venkatesan R, Venkanna A, Afzal S, Lee E, Yoo J, Ji E, Kim SY, Kim MH. Identification of novel acetylcholinesterase inhibitors designed by pharmacophore-based virtual screening, molecular docking and bioassay. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-33354-6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ramesh P, Veerappapillai S. Designing novel compounds for the treatment and management of RET-positive non-small cell lung cancer—fragment based drug design strategy. Molecules. 2022. https://doi.org/10.3390/molecules27051590.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wójcikowski M, Ballester PJ, Siedlecki P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci Rep. 2017. https://doi.org/10.1038/srep46710.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li H, Lu G, Sze KH, Su X, Chan WY, Leung KS. Machine-learning scoring functions trained on complexes dissimilar to the test set already outperform classical counterparts on a blind benchmark. Brief Bioinform. 2021. https://doi.org/10.1093/bib/bbab225.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li H, Leung KS, Wong MH, Ballester PJ. Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inform. 2015. https://doi.org/10.1002/minf.201400132.

    Article  PubMed  Google Scholar 

  27. Leeson PD, Young RJ. Molecular property design: does everyone get it? ACS Med Chem Lett. 2015. https://doi.org/10.1021/acsmedchemlett.5b00157.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky318.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aziz M, Ejaz SA, Zargar S, Akhtar N, Aborode AT, Wani TA, Batiha GE, Siddique F, Alqarni M, Akintola AA. Deep learning and structure-based virtual screening for drug discovery against NEK7: a novel target for the treatment of cancer. Molecules. 2022. https://doi.org/10.3390/molecules27134098.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD Jr. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2010. https://doi.org/10.1002/jcc.21367.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wang H, Dommert F, Holm C. Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency. J Chem Phys. 2010. https://doi.org/10.1063/1.3446812.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Allen WJ, Rizzo RC. Implementation of the Hungarian algorithm to account for ligand symmetry and similarity in structure-based design. J Chem Inform Model. 2014. https://doi.org/10.1021/ci400534h.

    Article  Google Scholar 

  33. Abdullahi SH, Uzairu A, Shallangwa GA, Uba S, Umar AB. In-silico activity prediction, structure-based drug design, molecular docking and pharmacokinetic studies of selected quinazoline derivatives for their antiproliferative activity against triple negative breast cancer (MDA-MB231) cell line. Bull Natl Res Cent. 2022. https://doi.org/10.1186/s42269-021-00690-z.

    Article  Google Scholar 

  34. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem. 2006. https://doi.org/10.1021/jm051256o.

    Article  PubMed  Google Scholar 

  35. Azam F, Eid EE, Almutairi A. Targeting SARS-CoV-2 main protease by teicoplanin: a mechanistic insight by docking, MM/GBSA and molecular dynamics simulation. J Mol Struct. 2021. https://doi.org/10.1016/j.molstruc.2021.131124.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015. https://doi.org/10.1517/17460441.2015.1032936.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Madhavaram M, Nampally V, Gangadhari S, Palnati MK, Tigulla P. High-throughput virtual screening, ADME analysis, and estimation of MM/GBSA binding-free energies of azoles as potential inhibitors of Mycobacterium tuberculosis H37Rv. J Recept Signal Transduct Res. 2019. https://doi.org/10.1080/10799893.2019.1660895.

    Article  PubMed  Google Scholar 

  38. Basavarajappa GM, Rehman A, Shiroorkar PN, Sreeharsha N, Anwer MK, Aloufi B. Therapeutic effects of Crataegus monogyna inhibitors against breast cancer. Front Pharmacol. 2023. https://doi.org/10.3389/fphar.2023.1187079.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Saba A, Sarwar F, Muhammad S, Ilyas M, Iqbal J, Al-Sehemi AG, Ayub K, Gilani MA, Adnan M. Insighting the inhibitory potential of novel modafinil drug derivatives against estrogen alpha (ERα) of breast cancer through a triple hybrid computational methodology. J Mol Liq. 2022. https://doi.org/10.1016/j.molliq.2022.120234.

    Article  Google Scholar 

  40. Singh N, Chaput L, Villoutreix BO. Fast rescoring protocols to improve the performance of structure-based virtual screening performed on protein–protein interfaces. J Chem Inf Model. 2020. https://doi.org/10.1021/acs.jcim.0c00545.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Thirunavukkarasu MK, Suriya U, Rungrotmongkol T, Karuppasamy R. In silico screening of available drugs targeting non-small cell lung cancer targets: a drug repurposing approach. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics14010059.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Velasquez-López Y, Tejera E, Perez-Castillo Y. Can docking scoring functions guarantee success in virtual screening? Annu Rep Med Chem. 2022. https://doi.org/10.1016/bs.armc.2022.08.008.

    Article  Google Scholar 

  43. Phengsakun G, Boonyarit B, Rungrotmongkol T, Suginta W. Structure-based virtual screening for potent inhibitors of GH-20 β-N-acetylglucosaminidase: classical and machine learning scoring functions, and molecular dynamics simulations. Comput Biol Chem. 2023. https://doi.org/10.1016/j.compbiolchem.2023.107856.

    Article  PubMed  Google Scholar 

  44. Al-Ghorbani M, Gouda MA, Baashen M, Alharbi O, Almalki FA, Ranganatha LV. Piperazine heterocycles as potential anticancer agents: a review. Pharm Chem J. 2022. https://doi.org/10.1007/s11094-022-02597-z.

    Article  Google Scholar 

  45. Ruzic D, Ellinger B, Djokovic N, Santibanez JF, Gul S, Beljkas M, Djuric A, Ganesan A, Pavic A, Srdic-Rajic T, Petkovic M. Discovery of 1-benzhydryl-piperazine-based HDAC inhibitors with anti-breast cancer activity: synthesis, molecular modeling, in vitro and in vivo biological evaluation. Pharmaceutics. 2022. https://doi.org/10.3390/pharmaceutics14122600.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Long H, Hu X, Wang B, Wang Q, Wang R, Liu S, Xiong F, Jiang Z, Zhang XQ, Ye WC, Wang H. Discovery of Novel apigenin-piperazine hybrids as potent and selective poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors for the treatment of cancer. J Med Chem. 2021. https://doi.org/10.1021/acs.jmedchem.1c00735.

    Article  PubMed  Google Scholar 

  47. Akkoç MK, Yüksel MY, Durmaz I, Atalay RÇ. Design, synthesis, and biological evaluation of indole-based 1, 4-disubstituted piperazines as cytotoxic agents. Turk J Chem. 2012. https://doi.org/10.3906/kim-1111-5.

    Article  Google Scholar 

  48. Londhe AM, Gadhe CG, Lim SM, Pae AN. Investigation of molecular details of Keap1-Nrf2 inhibitors using molecular dynamics and umbrella sampling techniques. Molecules. 2019. https://doi.org/10.3390/molecules24224085.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Radwan A, Mahrous GM. Docking studies and molecular dynamics simulations of the binding characteristics of waldiomycin and its methyl ester analog to Staphylococcus aureus histidine kinase. PLoS ONE. 2020. https://doi.org/10.1371/journal.pone.0234215.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ramesh P, Shin WH, Veerappapillai S. Discovery of a potent candidate for ret-specific non-small-cell lung cancer—a combined in silico and in vitro strategy. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13111775.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Swapna LS, Bhaskara RM, Sharma J, Srinivasan N. Roles of residues in the interface of transient protein-protein complexes before complexation. Sci Rep. 2012. https://doi.org/10.1038/srep00334.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mosquera-Yuqui F, Lopez-Guerra N, Moncayo-Palacio EA. Targeting the 3CLpro and RdRp of SARS-CoV-2 with phytochemicals from medicinal plants of the Andean Region: molecular docking and molecular dynamics simulations. J Biomol Struct Dyn. 2022. https://doi.org/10.1080/07391102.2020.1835716.

    Article  PubMed  Google Scholar 

  53. Chatterjee P, Karn R, Emerson IA, Banerjee S. Docking and molecular dynamics simulation revealed the potential inhibitory activity of amygdalin in triple-negative breast cancer therapeutics targeting the BRCT domain of BARD1 receptor. Mol Biotechnol. 2023. https://doi.org/10.1007/s12033-023-00680-8.

    Article  PubMed  Google Scholar 

  54. Baig MH, Sudhakar DR, Kalaiarasan P, Subbarao N, Wadhawa G, Lohani M, Khan MK, Khan AU. Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: a molecular dynamics study. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0112456.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the management of Vellore Institute of Technology for providing the facilities to carry out this research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HRK performed the computational work, analysed the data and prepared tables and figures. RK conceived this study and is responsible for the overall design, interpretation, manuscript preparation and communication. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ramanathan Karuppasamy.

Ethics declarations

Conflict of interest

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 178 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthy, H.R., Karuppasamy, R. A multitier virtual screening of antagonists targeting PD-1/PD-L1 interface for the management of triple-negative breast cancer. Med Oncol 40, 312 (2023). https://doi.org/10.1007/s12032-023-02183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02183-7

Keywords

Navigation