Skip to main content

Advertisement

Log in

ErbB2-upregulated HK1 and HK2 promote breast cancer cell proliferation, migration and invasion

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

ErbB2 is overexpressed in 15-20% of breast cancer, which is associated with malignancy and poor prognosis. We previously reported that ErbB2 supports malignant progression of breast cancer by upregulating lactate dehydrogenase A (LDHA), an important enzyme in glycolysis. However, whether ErbB2 promotes breast cancer progression through other glycolytic enzymes remains unclear. Hexokinase 1 (HK1) and hexokinase 2 (HK2) are the first rate-limiting enzymes of glycolysis and both of them are increased in breast cancer. Here, we aim to investigate whether ErbB2 upregulates HK1 and HK2 and the role of HK1 and HK2 in the malignant progression of ErbB2-overexpressing breast cancer. In current study, we found that the mRNA level of ErbB2 was positively correlated with that of HK1 and HK2, respectively. Moreover, ErbB2 upregulated the protein levels of HK1 and HK2 in breast cancer cells. We also found that both siHK1 and siHK2 significantly inhibited the proliferation, migration and invasion of ErbB2-overexpressing breast cancer cells. Taken together, our findings suggested that ErbB2 promoted the malignant progression of breast cancer cells by upregulating HK1 and HK2, and HK1 and HK2 might serve as promising therapeutic targets for ErbB2-overexpressing breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82. https://doi.org/10.1126/science.3798106.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao YH, Zhou M, Liu H, Ding Y, Khong HT, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene. 2009;28:3689–701. https://doi.org/10.1038/onc.2009.229.

    Article  CAS  PubMed  Google Scholar 

  3. He L, Lv S, Ma X, Jiang S, Zhou F, et al. ErbB2 promotes breast cancer metastatic potential via HSF1/LDHA axis-mediated glycolysis. Med Oncol. 2022;39:45. https://doi.org/10.1007/s12032-021-01641-4.

    Article  CAS  PubMed  Google Scholar 

  4. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol. 2002;20:379–87. https://doi.org/10.1200/JCO.2002.20.2.379.

    Article  CAS  PubMed  Google Scholar 

  5. Gao Y, Xu D, Yu G, Liang J. Overexpression of metabolic markers HK1 and PKM2 contributes to lymphatic metastasis and adverse prognosis in Chinese gastric cancer. Int J Clin Exp Pathol. 2015;8:9264–71.

    PubMed  PubMed Central  Google Scholar 

  6. He X, Lin X, Cai M, Zheng X, Lian L, et al. Overexpression of hexokinase 1 as a poor prognosticator in human colorectal cancer. Tumour Biol. 2016;37:3887–95. https://doi.org/10.1007/s13277-015-4255-8.

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, Tian H, Luo H, Fu J, Jiao Y, et al. Prognostic significance and related mechanisms of hexokinase 1 in ovarian cancer. Onco Targets Ther. 2020;13:11583–94. https://doi.org/10.2147/OTT.S270688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo F, Liu X, Yan N, Li S, Cao G, et al. Hypoxia-inducible transcription factor-1alpha promotes hypoxia-induced A549 apoptosis via a mechanism that involves the glycolysis pathway. BMC Cancer. 2006;6:26. https://doi.org/10.1186/1471-2407-6-26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duan Q, Li D, Xiong L, Chang Z, Xu G. SILAC quantitative proteomics and biochemical analyses reveal a novel molecular mechanism by which ADAM12S promotes the proliferation, igramtion, and invasion of small cell lung cancer cells through upregulating hexokinase 1. J Proteome Res. 2019;18:2903–14. https://doi.org/10.1021/acs.jproteome.9b00208.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang J, Wang S, Jiang B, Huang L, Ji Z, et al. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nat Commun. 2017;8:13732. https://doi.org/10.1038/ncomms13732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang Y, Ouyang F, Yang F, Zhang N, Zhao W, et al. The expression of hexokinase 2 and its hub genes are correlated with the prognosis in glioma. BMC Cancer. 2022;22:900. https://doi.org/10.1186/s12885-022-10001-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishfaq M, Bashir N, Riaz SK, Manzoor S, Khan JS, et al. Expression of HK2, PKM2, and PFKM is associated with metastasis and late disease onset in breast cancer patients. Genes (Basel). 2022;13:549. https://doi.org/10.3390/genes13030549.

    Article  CAS  PubMed  Google Scholar 

  13. Liu C, Li H, Huang H, Zheng P, Li Z. The correlation of HK2 gene expression with the occurrence, immune cell infiltration, and prognosis of renal cell carcinoma. Dis Markers. 2022;2022:1452861. https://doi.org/10.1155/2022/1452861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao S, Chen X, Jin H, Ren S, Liu Z, et al. Overexpression of ErbB2 renders breast cancer cells susceptible to 3-BrPA through the increased dissociation of hexokinase II from mitochondrial outer membrane. Oncol Lett. 2016;11:1567–73. https://doi.org/10.3892/ol.2015.4043.

    Article  CAS  PubMed  Google Scholar 

  15. Shao M, Zhang J, Zhang J, Ren S, Liu Z, et al. SALL4 promotes gastric cancer progression via hexokinase II mediated glycolysis. Cancer Cell Int. 2020;20:188. https://doi.org/10.1186/s12935-020-01275-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Du W, Liu N, Zhang Y, Liu X, Yang Y, et al. PLOD2 promotes aerobic glycolysis and cell progression in colorectal cancer by upregulating HK2. Biochem Cell Biol. 2020;98:386–95. https://doi.org/10.1139/bcb-2019-0256.

    Article  CAS  PubMed  Google Scholar 

  17. Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell. 2013;24:213–28. https://doi.org/10.1016/j.ccr.2013.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yuan G, Qian L, Shi M, Lu F, Li D, et al. HER2-dependent MMP-7 expression is mediated by activated STAT3. Cell Signal. 2008;20:1284–91. https://doi.org/10.1016/j.cellsig.2008.02.017.

    Article  CAS  PubMed  Google Scholar 

  19. Chen J, Lv S, Huang B, Ma X, Fu S, et al. Upregulation of SCD1 by ErbB2 via LDHA promotes breast cancer cell migration and invasion. Med Oncol. 2023;40:40. https://doi.org/10.1007/s12032-022-01904-8.

    Article  CAS  Google Scholar 

  20. John S, Weiss JN, Ribalet B. Subcellular localization of hexokinases I and II directs the metabolic fate of glucose. PLoS One. 2011;6:e17674. https://doi.org/10.1371/journal.pone.0017674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jiang S, Zhang LF, Zhang HW, Hu S, Lu MH, et al. A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells. EMBO J. 2012;31:1985–98. https://doi.org/10.1038/emboj.2012.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shi T, Ma Y, Cao L, Zhan S, Xu Y, et al. B7–H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2. Cell Death Dis. 2019;10:308. https://doi.org/10.1038/s41419-019-1549-6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Amendola CR, Mahaffey JP, Parker SJ, Ahearn IM, Chen WC, et al. KRAS4A directly regulates hexokinase 1. Nature. 2019;576:482–6. https://doi.org/10.1038/s41586-019-1832-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carmona FJ, Montemurro F, Kannan S, Rossi V, Verma C, et al. AKT signaling in ERBB2-amplified breast cancer. Pharmacol Ther. 2016;158:63–70. https://doi.org/10.1016/j.pharmthera.2015.11.013.

    Article  CAS  PubMed  Google Scholar 

  25. Roberts DJ, Miyamoto S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2015;22:364. https://doi.org/10.1038/cdd.2014.208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marin-Hernandez A, Gallardo-Perez J, Ralph S, Rodriguez-Enriquez S, Moreno-Sanchez R. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem. 2009;9:1084–101. https://doi.org/10.2174/138955709788922610.

    Article  CAS  PubMed  Google Scholar 

  27. Qi W, Li X, Zhang Y, Yao R, Qiu W, et al. Overexpression of Her-2 upregulates FoxM1 in gastric cancer. Int J Mol Med. 2014;33:1531–8. https://doi.org/10.3892/ijmm.2014.1732.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Yun Y, Wu B, Wen L, Wen M, et al. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription. Oncotarget. 2016;7:47985–97. https://doi.org/10.18632/oncotarget.10103.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ruan SQ, Wang SW, Wang ZH, Zhang SZ. Regulation of HRG-beta1-induced proliferation, migration and invasion of MCF-7 cells by upregulation of GPR30 expression. Mol Med Rep. 2012;6:131–8. https://doi.org/10.3892/mmr.2012.874.

    Article  CAS  PubMed  Google Scholar 

  30. Jiang SF, Tu KL, Zhou L, Fu Q, Zhao YH. Heregulin-β-induced glycolysis promotes migration of breast cancer cell line MCF7. J SCU (Medical Sciences). 2016;47:463–7. https://doi.org/10.13464/j.scuxbyxb.2016.04.003.

    Article  Google Scholar 

  31. Zhao Y, Liu H, Liu Z, Ding Y, Ledoux SP, et al. Overcoming trastuzumab resistance in breast cancer by targeting dysregulated glucose metabolism. Cancer Res. 2011;71:4585–97. https://doi.org/10.1158/0008-5472.CAN-11-0127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li W, Xu Z, Hong J, Xu Y. Expression patterns of three regulation enzymes in glycolysis in esophageal squamous cell carcinoma: association with survival. Med Oncol. 2014;31:118. https://doi.org/10.1007/s12032-014-0118-1.

    Article  CAS  PubMed  Google Scholar 

  33. Sun X, Zhang L. MicroRNA-143 suppresses oral squamous cell carcinoma cell growth, invasion and glucose metabolism through targeting hexokinase 2. 2017. Biosci Rep. https://doi.org/10.1042/BSR20160404.

  34. Anderson M, Marayati R, Moffitt R, Yeh JJ. Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget. 2017;8:56081–94. https://doi.org/10.18632/oncotarget.9760.

    Article  PubMed  Google Scholar 

  35. Tian X, Liu D, Zuo X, Sun X, Wu M, et al. Hexokinase 2 promoted cell motility and proliferation by activating Akt1/p-Akt1 in human ovarian cancer cells. J Ovarian Res. 2022;15:92. https://doi.org/10.1186/s13048-022-01027-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen Q, Li L, Liu X, Feng Q, Zhang Y, et al. Hexokinases 2 promoted cell motility and distant metastasis by elevating fibronectin through Akt1/p-Akt1 in cervical cancer cells. Cancer Cell Int. 2021;21:600. https://doi.org/10.1186/s12935-021-02312-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81272907).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YZ and RY; Methodology: XM, JC and YZ; Formal analysis and investigation: XM, JC and BH; Writing-original draft preparation: XM; Writing-review and editing: XM, YZ, BH, SF and SQ; Funding acquisition: YZ; Supervision: YZ and RY. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Rong Yu or Yuhua Zhao.

Ethics declarations

Conflict of interest

Authors have declared that no competing interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 102 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Chen, J., Huang, B. et al. ErbB2-upregulated HK1 and HK2 promote breast cancer cell proliferation, migration and invasion. Med Oncol 40, 154 (2023). https://doi.org/10.1007/s12032-023-02008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02008-7

Keywords

Navigation