Skip to main content

Advertisement

Log in

The role of nutrition in harnessing the immune system: a potential approach to prevent cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer is a vital barrier to increase the life expectancy and the foremost cause of death globally. The initial diagnosis and proper management of cancer can expand the survival rate of individuals. This review provides an in-depth investigation of cancer causes symptoms, types of cancer, and worldwide distribution of cancer. The relation between nutrition (i.e., various food items) and cancer is also emphasized to offer a framework of nutrition management in different cancer types. The microbiota is closely associated with the occurrence of cancer. Thus, genomics of intestinal microbes and nutrigenomics have been discussed based on the reported meta-analysis studies. A dramatic increase in cancer rates has been observed due to intake of alcohol, microbial infections, and deficiency of nutrition. Malnutrition is a substantial problem in cancer patients linked with improper treatment and increased morbidity. The detail studies of cancer and nutrigenomics are an eminent approach to comprehend the relation between microbes and the consumption of certain food types which can further reduce the cancer risk. The incorporation of specific nutrients and probiotics improved the gut microbial health, increased life expectancy, and also decreased the incidence of tumorigenesis in individuals.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021;127(16):3029–30.

    Article  PubMed  Google Scholar 

  2. Organization WH. Technical package for cardiovascular disease management in primary health care: healthy-lifestyle counselling. Geneva: World Health Organization; 2018.

    Google Scholar 

  3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  4. Russell LM, Liu CH, Grodzinski P. Nanomaterials innovation as an enabler for effective cancer interventions. Biomaterials. 2020;242:119926.

    Article  PubMed  CAS  Google Scholar 

  5. Hajar R. The air of history: early medicine to galen (part I). Heart views. 2012;13:120.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Prates C, Sousa S, Oliveira C, Ikram S. Prostate metastatic bone cancer in an Egyptian Ptolemaic mummy, a proposed radiological diagnosis. Int J Paleopathol. 2011;1:98–103.

    Article  PubMed  Google Scholar 

  7. Faguet GB. A brief history of cancer: age-old milestones underlying our current knowledge database. Int J Cancer. 2015;136:2022–36.

    Article  PubMed  CAS  Google Scholar 

  8. OECD. Publishing O, co-operation OfE, development. OECD health policy studies: assuring quality to improve survival. Paris: OECD Publishing; 2013.

    Google Scholar 

  9. Dagenais GR, Leong DP, Rangarajan S, et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet. 2020;395:785–94.

    Article  PubMed  Google Scholar 

  10. Lindsey A, Torre RLS, Ward Elizabeth M, Jemal Ahmedin. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev. 2015;65:87–108.

    Google Scholar 

  11. Popat K, McQueen K, Feeley TW. The global burden of cancer. Best Pract Res Clin Anaesthesiol. 2013;27(4):399–408.

    Article  PubMed  Google Scholar 

  12. Gillberg L, Ørskov AD, Liu M, Harsløf LB, Jones PA, Grønbæk K. Vitamin C-A new player in regulation of the cancer epigenome. Semin cancer biol. 2018;51:59–67.

    Article  PubMed  CAS  Google Scholar 

  13. Farrell PJ. Epstein-Barr virus and cancer. Annu Rev Pathol. 2019;14:29–53.

    Article  PubMed  CAS  Google Scholar 

  14. Botelho MC, Alves H, Richter J. Wound healing and cancer progression in Opisthorchis viverrini associated cholangiocarcinoma. Parasitology Res. 2016;115:2913–4.

    Article  Google Scholar 

  15. Alshammari FD. Do non-viral microorganisms play a role in the aetiology of human cancers? A review. Int J Pharma Res Allied Sci. 2018;7(4):179–85.

    CAS  Google Scholar 

  16. Yoshiyama H, Ueda K, Komano J, Iizasa H. Infection-associated cancers. J Oncol. 2020. https://doi.org/10.1155/2020/4979131.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ferlay J. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOGAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  PubMed  CAS  Google Scholar 

  18. Torre LA, Islami F, Siegel RL, Ward EM, Jemal A. Global cancer in women: burden and trends. Cancer Epidemiol Prev Biomarkers. 2017;26:444–57.

    Article  Google Scholar 

  19. Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317:2402–16.

    Article  PubMed  CAS  Google Scholar 

  20. Arnedos M, Vicier C, Loi S, et al. Precision medicine for metastatic breast cancer—limitations and solutions. Nat Rev Clin Oncol. 2015;12:693–704.

    Article  PubMed  CAS  Google Scholar 

  21. Chadha J, Nandi D, Atri Y, Nag A. Significance of human microbiome in breast cancer: tale of an invisible and an invincible. Semin Cancer Biol. 2021;70:112–27.

    Article  PubMed  CAS  Google Scholar 

  22. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Erratum: global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2020;70:313.

    Article  Google Scholar 

  23. Smith M, Hammond I, Saville M. Lessons from the renewal of the national cervical screening program in Australia. Public Health Res Pract. 2019;29:e292191420.

    Article  Google Scholar 

  24. Jalil AT, Al-Khafaji AHD, Karevskiy A, Dilfy SH, Hanan ZK. Polymerase chain reaction technique for molecular detection of HPV16 infections among women with cervical cancer in Dhi-Qar Province. Mat Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.05.211.

    Article  Google Scholar 

  25. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382:889–99.

    Article  PubMed  Google Scholar 

  26. Huh WK, Joura EA, Giuliano AR, et al. Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16–26 years: a randomised, double-blind trial. Lancet. 2017;390:2143–59.

    Article  PubMed  CAS  Google Scholar 

  27. Sieh W, Salvador S, McGuire V, et al. Tubal ligation and risk of ovarian cancer subtypes: a pooled analysis of case-control studies. Int J Epidemiol. 2013;42:579–89.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ferlay J, Ervik M, Lam F, et al. Global cancer observatory: cancer today. Lyon: International agency for research on cancer; 2018. p. 1–6.

    Google Scholar 

  29. Markozannes G, Tzoulaki I, Karli D, et al. Diet, body size, physical activity and risk of prostate cancer: an umbrella review of the evidence. Eur J Cancer. 2016;69:61–9.

    Article  PubMed  Google Scholar 

  30. Linehan WM, Schmidt LS, Crooks DR, et al. The metabolic basis of kidney cancer. Cancer Discov. 2019;9:1006–21.

    Article  PubMed  CAS  Google Scholar 

  31. Jemal A, Centre MM, Desantis C, Ward EM. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev. 2010;19:1893–907.

    Article  PubMed  Google Scholar 

  32. Roberti MP, Rauber C, Kroemer G, Zitvogel L. Impact of the ileal microbiota on colon cancer. Semin Cancer Biol. 2021. https://doi.org/10.1016/j.semcancer.2021.09.016.

    Article  PubMed  Google Scholar 

  33. Siegel R, Ward E, Brawley O, Jemal A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA A Cancer J Clinicians. 2011;61:212–36.

    Article  Google Scholar 

  34. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386:1546–55.

    Article  PubMed  Google Scholar 

  35. Fitzmaurice C, Akinyemiju TF, Al Lami FH, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4:1553–68.

    Article  PubMed  Google Scholar 

  36. Bartkova J, Hamerlik P, Stockhausen M, et al. Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene. 2010;29:5095–102.

    Article  PubMed  CAS  Google Scholar 

  37. Curtin NJ. DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer. 2012;12:801–17.

    Article  PubMed  CAS  Google Scholar 

  38. Organization WH. Technical package for cardiovascular disease management in primary health care healthy-lifestyle counselling. Geneva: World Health Organization; 2018.

    Google Scholar 

  39. Nogacka AM, Gómez-Martín M, Suárez A, González-Bernardo O, de Los Reyes-Gavilán CG, González S. Xenobiotics formed during food processing: their relation with the intestinal microbiota and colorectal cancer. Int J Mol Sci. 2019;20(8):2051.

    Article  PubMed Central  CAS  Google Scholar 

  40. Naja F, Hwalla N, Itani L, Karam S, Sibai AM, Nasreddine L. A Western dietary pattern is associated with overweight and obesity in a national sample of Lebanese adolescents (13–19 years): a cross-sectional study. British J Nutr. 2015;114:1909–19.

    Article  CAS  Google Scholar 

  41. Fuhrman J. The hidden dangers of fast and processed food. Am J Lifestyle Med. 2018;12:375–81.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ganesan K, Sukalingam K, Xu B. Impact of consumption of repeatedly heated cooking oils on the incidence of various cancers-a critical review. Critic Rev Food Sci Nutr. 2019;59:488–505.

    Article  CAS  Google Scholar 

  43. Shanle EK, Xu W. Endocrine disrupting chemicals targeting estrogen receptor signaling: identification and mechanisms of action. Chem Res Toxicol. 2011;24:6–19.

    Article  PubMed  CAS  Google Scholar 

  44. Ganesan K, Xu B. Deep frying cooking oils promote the high risk of metastases in the breast-a critical review. Food Chem Toxicol. 2020;144:111648.

    Article  PubMed  CAS  Google Scholar 

  45. Zhang L, Sedykh A, Tripathi A, et al. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR-and structure-based virtual screening approaches. Toxicol App Pharmacol. 2013;272:67–76.

    Article  CAS  Google Scholar 

  46. Li Y, Luh CJ, Burns KA, et al. Endocrine-disrupting chemicals (EDCs): in vitro mechanism of estrogenic activation and differential effects on ER target genes. Environ Health Perspect. 2013;121:459–66.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hur SJ, Yoon Y, Jo C, Jeong JY, Lee KT. Effect of dietary red meat on colorectal cancer risk-a review. Compr Rev Food Sci Food Saf. 2019;18:1812–24.

    Article  PubMed  CAS  Google Scholar 

  48. Han MA, Zeraatkar D, Guyatt GH, et al. Reduction of red and processed meat intake and cancer mortality and incidence: a systematic review and meta-analysis of cohort studies. Ann Intern Med. 2019;171:711–20.

    Article  PubMed  Google Scholar 

  49. Clinton SK, Giovannucci EL, Hursting SD. The world cancer research fund/american institute for cancer research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. J Nutri. 2020;150:663–71.

    Article  Google Scholar 

  50. Kayamba V. Nutrition and upper gastrointestinal cancers: an overview of current understandings. Semin Cancer Biol. 2022;83:605–16.

    Article  PubMed  CAS  Google Scholar 

  51. Wu X, Song M, Wang M, et al. Chemopreventive effects of nobiletin and its colonic metabolites on colon carcinogenesis. Mol Nutri Food Res. 2015;59:2383–94.

    Article  CAS  Google Scholar 

  52. Goh JXH, Tan LT, Goh JK, et al. Nobiletin and derivatives: functional compounds from citrus fruit peel for colon cancer chemoprevention. Cancers (Basel). 2019;11(6):867.

    Article  CAS  Google Scholar 

  53. Metchnikoff É, Mitchell PC. The prolongation of life: Mauro Liistro Editore. Berlin: Outlook verlag; 2018.

    Google Scholar 

  54. Sehrawat N, Yadav M, Singh M, Kumar V, Sharma VR, Sharma AK. Probiotics in microbiome ecological balance providing a therapeutic window against cancer. Semin Cancer Biol. 2021;70:24–36.

    Article  PubMed  CAS  Google Scholar 

  55. Wieers G, Belkhir L, Enaud R, Leclercq S, de Foy J. How probiotics affect the microbiota. Front Cell Infect Microbiol. 2020;9:454.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Madsen KL. Enhancement of epithelial barrier function by probiotics. J Epithelial Biol Pharmacol. 2012. https://doi.org/10.2174/1875044301205010055.

    Article  Google Scholar 

  57. Drago L. Probiotics and colon cancer. Microorganisms. 2019;7:66.

    Article  PubMed Central  CAS  Google Scholar 

  58. Mendoza L. Potential effect of probiotics in the treatment of breast cancer. Oncol Rev. 2019;13(2):422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wan Y, Xin Y, Zhang C, et al. Fermentation supernatants of Lactobacillus delbrueckii inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway. Oncol Let. 2014;7:1738–42.

    Article  Google Scholar 

  60. Zaharuddin L, Mokhtar NM, Nawawi KNM, Ali RAR. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol. 2019;19:1–8.

    Article  CAS  Google Scholar 

  61. Ankaiah D, Esakkiraj P, Perumal V, Ayyanna R, Venkatesan A. Probiotic characterization of Enterococcus faecium por1: cloning, over expression of Enterocin-A and evaluation of antibacterial, anti-cancer properties. J Function Foods. 2017;38:280–92.

    Article  CAS  Google Scholar 

  62. Saber A, Alipour B, Faghfoori Z, Khosroushahi AY. Secretion metabolites of probiotic yeast, Pichia kudriavzevii AS-12, induces apoptosis pathways in human colorectal cancer cell lines. Nutri Res. 2017;41:36–46.

    Article  CAS  Google Scholar 

  63. Utz VEM, Perdigón G, de LeBlanc AdM. Oral administration of milk fermented by Lactobacillus casei CRL431 was able to decrease metastasis from breast cancer in a murine model by modulating immune response locally in the lungs. J Function Foods. 2019;54:263–70.

    Article  Google Scholar 

  64. Heydari Z, Rahaie M, Alizadeh AM. Different anti-inflammatory effects of Lactobacillus acidophilus and Bifidobactrum bifidioum in hepatocellular carcinoma cancer mouse through impact on microRNAs and their target genes. J Nutri Intermed Metabolism. 2019;16:100096.

    Article  Google Scholar 

  65. Ghanei N, Rezaei N, Amiri GA, Zayeri F, Makki G, Nasseri E. The probiotic supplementation reduced inflammation in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. J Function Foods. 2018;42:306–11.

    Article  CAS  Google Scholar 

  66. Cheng Z, Xu H, Wang X, Liu Z. Lactobacillus raises in vitro anticancer effect of geniposide in HSC-3 human oral squamous cell carcinoma cells. Exp Ther Med. 2017;14:4586–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Asoudeh-Fard A, Barzegari A, Dehnad A, Bastani S, Golchin A, Omidi Y. Lactobacillus plantarum induces apoptosis in oral cancer KB cells through upregulation of PTEN and downregulation of MAPK signalling pathways. BioImpacts. 2017;7:193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Markowski MC, Boorjian SA, Burton JP, et al. The microbiome and genitourinary cancer: a collaborative review. Eur Urology. 2019;75:637–46.

    Article  Google Scholar 

  69. Scott AJ, Alexander JL, Merrifield CA, et al. International cancer microbiome consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut. 2019;68:1624–32.

    Article  PubMed  CAS  Google Scholar 

  70. Singh RK, Chang H-W, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Translation Med. 2017;15:1–17.

    Article  Google Scholar 

  71. Mert I, Walther-Antonio M, Mariani A. Case for a role of the microbiome in gynecologic cancers: clinician’s perspective. J Obstet Gynaecol Res. 2018;44:1693–704.

    Article  PubMed  Google Scholar 

  72. Zou S, Fang L, Lee M-H. Dysbiosis of gut microbiota in promoting the development of colorectal cancer. Gastroenterol Rep. 2018;6:1–12.

    Article  Google Scholar 

  73. Wang Y, Yang G, You L, et al. Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Mol cancer. 2019;18:1–13.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nicastro HL, Trujillo EB, Milner JA. Nutrigenomics and cancer prevention. Curr Nutr Rep. 2012;1(1):37–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. He F-J, Chen J-Q. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: differences between Chinese women and women in Western countries and possible mechanisms. Food Sci Human Wellness. 2013;2:146–61.

    Article  Google Scholar 

  76. Kang JX, Liu A. The role of the tissue omega-6/omega-3 fatty acid ratio in regulating tumor angiogenesis. Cancer Metastasis Rev. 2013;32:201–10.

    Article  PubMed  CAS  Google Scholar 

  77. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  78. Islami F, Ward EM, Sung H, et al. Annual report to the nation on the status of cancer, part 1: national cancer statistics. JNCI J Natl Cancer Inst. 2021;113:1648–9.

    Article  Google Scholar 

  79. Octavia-Laura Moldovan AR, Tanase C, Vari C-E. Glutamate—a multifaceted molecule: endogenous neurotransmitter, controversial food additive, design compound for anti-cancer drugs a critical appraisal. Food Chem Toxicol. 2021;153:112290.

    Article  PubMed  Google Scholar 

  80. Moreau P, Touzeau C, Vij R, Goldsmith SR, Rosko AE. Newly diagnosed myeloma in 2020. Am Soc Clin Oncol Educ Book. 2020;40:e144–58.

    Article  Google Scholar 

  81. Rajkumar SV. Multiple myeloma: 2020 update on diagnosis, risk-stratification and management. Am J Hematol. 2020;95:548–67.

    Article  PubMed  CAS  Google Scholar 

  82. dos Santos BC, de Lima ÉD, Rodrigues TS, et al. Mitochondria and redox homoeostasis as chemotherapeutic targets of Araucaria angustifolia (Bert.) O. Kuntze in human larynx HEp-2 cancer cells. Chemico-Biol Interact. 2015;231:108–18.

    Article  Google Scholar 

  83. Venturini CG, Bruinsmann FA, Contri RV, et al. Co-encapsulation of imiquimod and copaiba oil in novel nanostructured systems: promising formulations against skin carcinoma. Eur J Pharma Sci. 2015;79:36–43.

    Article  CAS  Google Scholar 

  84. Teixeira L, Costa G, Dörr F, et al. Potential antiproliferative activity of polyphenol metabolites against human breast cancer cells and their urine excretion pattern in healthy subjects following acute intake of a polyphenol-rich juice of grumixama (Eugenia brasiliensis Lam.). Food funct. 2017;8:2266–74.

    Article  PubMed  CAS  Google Scholar 

  85. Fidelis M, Santos JS, Escher GB, et al. Polyphenols of jabuticaba [Myrciaria jaboticaba (Vell.) O. Berg] seeds incorporated in a yogurt model exert antioxidant activity and modulate gut microbiota of 1, 2-dimethylhydrazine-induced colon cancer in rats. Food Chem. 2021;334:127565.

    Article  PubMed  CAS  Google Scholar 

  86. Sabino A, Eustáquio L, Miranda A, Biojone C, Mariosa T, Gouvêa CMCP. Stryphnodendron adstringens (“Barbatimão”) leaf fraction: chemical characterization, antioxidant activity, and cytotoxicity towards human breast cancer cell lines. Appl biochem biotechnol. 2018;184:1375–89.

    Article  PubMed  CAS  Google Scholar 

  87. El Zawawy NA. Antioxidant, antitumor, antimicrobial studies and quantitative phytochemical estimation of ethanolic extracts of selected fruit peels. Int J Curr MicrobiolaAppl Sci. 2015;4:298–309.

    Google Scholar 

  88. Nair MS, Soren K, Singh V, Boro B. Anticancer activity of fruit and leaf extracts of Averrhoa bilimbi on mcf-7 human breast cancer cell lines: a preliminary study. Austin J Pharmacol Ther. 2016;4:1082.

    Google Scholar 

  89. Salla S, Sunkara R, Walker LT, Verghese M. Antioxidant and apoptotic activity of papaya peel extracts in HepG2 cells. Food Nutri Sci. 2016;7:485–94.

    CAS  Google Scholar 

  90. Faghfoori Z, Pourghassem Gargari B, Saber A, Seyyedi M, Fazelian S, Khosroushahi AY. Prophylactic effects of secretion metabolites of dairy lactobacilli through downregulation of ErbB-2 and ErbB-3 genes on colon cancer cells. Eur J Cancer Preven. 2020;29:201–9.

    Article  CAS  Google Scholar 

  91. Yue Y, Ye K, Jing Lu, et al. Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment. Biomed Pharmaco. 2020;127:110159.

    Article  CAS  Google Scholar 

  92. Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, et al. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE. 2016;11:e0147960.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dubey V, Ghosh AR, Bishayee K, Khuda-Bukhsh AR. Appraisal of the anti-cancer potential of probiotic Pediococcus pentosaceus GS4 against colon cancer: in vitro and in vivo approaches. J Funct Foods. 2016;23:66–79.

    Article  CAS  Google Scholar 

  94. Daillère R, Vétizou M, Waldschmitt N, et al. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity. 2016;45:931–43.

    Article  PubMed  Google Scholar 

  95. Zamberi NR, Abu N, Mohamed NE, et al. The antimetastatic and antiangiogenesis effects of kefir water on murine breast cancer cells. Integr Cancer Ther. 2016;15:NP53–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Nistal E, Fernández-Fernández N, Vivas S, Olcoz JL. Factors determining colorectal cancer: the role of the intestinal microbiota. Front Oncol. 2015;5:220.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Han KJ, Lee N-K, Park H, Paik H-D. Anticancer and anti-inflammatory activity of probiotic Lactococcus lactis NK34. J Microbiol Biotechnol. 2015;25:1697–701.

    Article  PubMed  Google Scholar 

  98. Baldwin* C, Millette* M, Oth D, Ruiz MT, Luquet F-M, Lacroix M. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutri Cancer. 2010;62:371–8.

    Article  CAS  Google Scholar 

  99. Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol. 2010;80:1771–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Nicastro HL, Trujillo EB, Milner JA. Nutrigenomics and cancer prevention. Curr Nutri Rep. 2012;1:37–43.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by construction of the double first-class project (Grant No. 561119201), Lanzhou University, China, El-Sayed Salama.

Author information

Authors and Affiliations

Authors

Contributions

HX contributed to visualization, investigation, data curation, formal analysis, and writing of the Original Draft. MS contributed to investigation, visualization, data curation, formal analysis, and writing, reviewing, & editing. Is contributed to visualization, reviewing, and formal analysis. GA contributed to visualization and formal analysis. XL contributed to conceptualization, resources, data curation, validation, writing, reviewing, & editing of the manuscript. El-SS contributed to conceptualization, supervision, resources, data curation, validation, visualization, formal analysis, writing, reviewing, & editing of the manuscript, funding acquisition, and project administration.

Corresponding author

Correspondence to El-Sayed Salama.

Ethics declarations

Competing interest

The authors declare no competing interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors agree to publish this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaogang, H., Sharma, M., saif, I. et al. The role of nutrition in harnessing the immune system: a potential approach to prevent cancer. Med Oncol 39, 245 (2022). https://doi.org/10.1007/s12032-022-01850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01850-5

Keywords

Navigation