Skip to main content

Advertisement

Log in

Extracellular vesicle-based checkpoint regulation and immune state in cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Tumor cells exploit several mechanisms for hijacking an immunosuppressive tumor ecosystem in order to evade immune surveillance and to progress toward metastasis. Equipment of extracellular vesicles (EVs) with checkpoints is an example of cancer control over anti-tumor responses from immune system. Programmed death-ligand 1 (PD-L1) is a checkpoint highly expressed in a tumor at progressive stage. Interactions between PD-L1 with its receptor programmed death-1 receptor (PD-1) expressed on T cells will block the effector function of CD8+ T cells, known as one of the most important defensive cells against cancer. Evaluation of circulatory exosomal PD-L1 can be a prognostic biomarker in tumor diagnosis and responses to the immune checkpoint inhibitor (ICI) therapy, and can be considered as a tool in clinical practice for exploiting personalized therapy. Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is also a checkpoint that its engagement with CD80/CD86 expressed on antigen-presenting cells (APCs), such as dendritic cells (DCs) hamper the priming phase of CD4+ and CD8+ T cells. Harvesting EVs from tumor and their modification with desired anti-checkpoint antibodies can be a promising strategy in cancer immunotherapy. The aim of this review is to discuss about EV roles in checkpoint regulation, cancer diagnosis and ICI responses, and to survey possible application of such vesicles in cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors-clinical perspectives. Cell Oncol. 2021. https://doi.org/10.1007/s13402-021-00602-3.

    Article  Google Scholar 

  2. Majidpoor J, Mortezaee K. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Clin Immunol. 2021. https://doi.org/10.1016/j.clim.2021.108707.

    Article  PubMed  Google Scholar 

  3. Theodoraki M-N, Yerneni SS, Hoffmann TK, et al. Clinical significance of PD-L1+ exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24(4):896–905.

    Article  CAS  PubMed  Google Scholar 

  4. Majidpoor J, Mortezaee K. Interleukin-6 in SARS-CoV-2 induced disease: interactions and therapeutic applications. Biomed Pharmacother. 2022;145: 112419.

    Article  CAS  PubMed  Google Scholar 

  5. Kim DH, Kim H, Choi YJ, et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med. 2019;51(8):1–13.

    PubMed  PubMed Central  Google Scholar 

  6. Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang G, He L, Wang S, et al. EV PD-L1 is correlated with clinical features and contributes to T cell suppression in pediatric thyroid cancer. J Clin Endocrinol Metab. 2020;105(8):e2970–81.

    Article  Google Scholar 

  8. Li L, Cao B, Liang X, et al. Microenvironmental oxygen pressure orchestrates an anti-and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene. 2019;38(15):2830–43.

    Article  CAS  PubMed  Google Scholar 

  9. Poggio M, Hu T, Pai C-C, et al. Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell. 2019;177(2):414-427.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pucci M, Raimondo S, Urzì O, et al. Tumor-derived small extracellular vesicles induce pro-inflammatory cytokine expression and PD-L1 regulation in M0 macrophages via IL-6/STAT3 and TLR4 signaling pathways. Int J Mol Sci. 2021;22(22):12118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zanella A, Vautrot V, Aubin F, et al. PD-L1 in circulating exosomes of Merkel cell carcinoma. Exp Dermatol. 2022. https://doi.org/10.1111/exd.14520.

    Article  PubMed  Google Scholar 

  12. Shimada Y, Matsubayashi J, Kudo Y, et al. Serum-derived exosomal PD-L1 expression to predict anti-PD-1 response and in patients with non-small cell lung cancer. Sci Rep. 2021;11(1):1–10.

    Article  Google Scholar 

  13. Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560(7718):382–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Timaner M, Kotsofruk R, Raviv Z, et al. Microparticles from tumors exposed to radiation promote immune evasion in part by PD-L1. Oncogene. 2020;39(1):187–203.

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Lin Z, Liu L, et al. GOLM1 exacerbates CD8+ T cell suppression in hepatocellular carcinoma by promoting exosomal PD-L1 transport into tumor-associated macrophages. Signal Transduct Target Ther. 2021;6(1):1–15.

    Google Scholar 

  16. Mortezaee K, Majidpoor J. (Im) maturity in tumor ecosystem. Front Oncol. 2021;11:813897–813897.

    Article  PubMed  Google Scholar 

  17. Mortezaee K, Majidpoor J. Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol. 2022. https://doi.org/10.1007/s13402-022-00667-8.

    Article  Google Scholar 

  18. Farhood B, Najafi M, Salehi E, et al. Disruption of the redox balance with either oxidative or anti-oxidative overloading as a promising target for cancer therapy. J Cell Biochem. 2019;120(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  19. Mortezaee K. Hypoxia induces core-to-edge transition of progressive tumoral cells: a critical review on differential yet corroborative roles for HIF-1α and HIF-2α. Life Sci. 2020;242: 117145.

    Article  CAS  PubMed  Google Scholar 

  20. Mortezaee K, Majidpoor J. Checkpoint inhibitor/interleukin-based combination therapy of cancer. Cancer Med. 2022. https://doi.org/10.1002/cam4.4659.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Li P, Mao S, et al. Exosome CTLA-4 regulates PTEN/CD44 signal pathway in spleen deficiency internal environment to promote invasion and metastasis of hepatocellular carcinoma. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.757194.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr Biol. 2018;28(8):R435–44.

    Article  CAS  PubMed  Google Scholar 

  23. Fan SJ, Kroeger B, Marie PP, et al. Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J. 2020;39(16): e103009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Najafi M, Majidpoor J, Toolee H, et al. The current knowledge concerning solid cancer and therapy. J Biochem Mol Toxicol. 2021. https://doi.org/10.1002/jbt.22900.

    Article  PubMed  Google Scholar 

  25. Mortezaee K. Redox tolerance and metabolic reprogramming in solid tumors. Cell Biol Int. 2021;45(2):273–86.

    Article  CAS  PubMed  Google Scholar 

  26. Tian W, Yang X, Yang H, et al. Exosomal miR-338-3p suppresses non-small-cell lung cancer cells metastasis by inhibiting CHL1 through the MAPK signaling pathway. Cell Death Dis. 2021;12(11):1–12.

    Article  Google Scholar 

  27. Wen H, Liu Z, Tang J, et al. MiR-185-5p targets RAB35 gene to regulate tumor cell-derived exosomes-mediated proliferation, migration and invasion of non-small cell lung cancer cells. Aging (Albany NY). 2021;13(17):21435.

    Article  CAS  Google Scholar 

  28. Wei L, Wang G, Yang C, et al. MicroRNA-550a-3-5p controls the brain metastasis of lung cancer by directly targeting YAP1. Cancer Cell Int. 2021;21(1):1–16.

    Article  Google Scholar 

  29. Gao L, Nie X, Gou R, et al. Exosomal ANXA2 derived from ovarian cancer cells regulates epithelial-mesenchymal plasticity of human peritoneal mesothelial cells. J Cell Mol Med. 2021;25(23):10916–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang C, Wang X-Y, Zhang P, et al. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 2022;13(1):1–14.

    Article  Google Scholar 

  31. Shinde A, Paez JS, Libring S, et al. Transglutaminase-2 facilitates extracellular vesicle-mediated establishment of the metastatic niche. Oncogenesis. 2020;9(2):1–12.

    Article  Google Scholar 

  32. Xie F, Zhou X, Fang M, et al. Extracellular vesicles in cancer immune microenvironment and cancer immunotherapy. Adv Sci. 2019;6(24):1901779.

    Article  CAS  Google Scholar 

  33. Majidpoor J, Mortezaee K. Steps in metastasis: an updated review. Med Oncol. 2021;38(1):1–17.

    Article  Google Scholar 

  34. Benito-Martin A, Di Giannatale A, Ceder S, et al. The new deal: a potential role for secreted vesicles in innate immunity and tumor progression. Front Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00066.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mortezaee K. Enriched cancer stem cells, dense stroma, and cold immunity: Interrelated events in pancreatic cancer. J Biochem Mol Toxicol. 2021;35(4): e22708.

    Article  CAS  PubMed  Google Scholar 

  36. Najafi M, Mortezaee K, Majidpoor J. Stromal reprogramming: a target for tumor therapy. Life Sci. 2019;239: 117049.

    Article  CAS  PubMed  Google Scholar 

  37. Su D, Tsai H-I, Xu Z, et al. Exosomal PD-L1 functions as an immunosuppressant to promote wound healing. J Extracell Vesicles. 2020;9(1):1709262.

    Article  CAS  Google Scholar 

  38. Mortezaee K. Myeloid-derived suppressor cells in cancer immunotherapy-clinical perspectives. Life Sci. 2021;277: 119627.

    Article  CAS  PubMed  Google Scholar 

  39. Wang G, Xie L, Li B, et al. A nanounit strategy reverses immune suppression of exosomal PD-L1 and is associated with enhanced ferroptosis. Nat Commun. 2021;12(1):1–12.

    Google Scholar 

  40. Zhang L, Xue L, Wu Y, et al. Exosomes loaded with programmed death ligand-1 promote tumor growth by immunosuppression in osteosarcoma. Bioengineered. 2021;12(2):9520–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang Y, Li C-W, Chan L-C, et al. Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Res. 2018;28(8):862–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ricklefs FL, Alayo Q, Krenzlin H, et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci Adv. 2018;4(3):eaar2766.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang X, Zhang Y, Zhang Y, et al. The key role of exosomes on the pre-metastatic niche formation in tumors. Front Mol Biosci. 2021. https://doi.org/10.3389/fmolb.2021.703640.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Muller L, Simms P, Hong C-S, et al. Human tumor-derived exosomes (TEX) regulate Treg functions via cell surface signaling rather than uptake mechanisms. Oncoimmunology. 2017;6(8): e1261243.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Qiu Y, Yang Y, Yang R, et al. Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene. 2021;40(31):4992–5001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fan Y, Che X, Qu J, et al. Exosomal PD-L1 retains immunosuppressive activity and is associated with gastric cancer prognosis. Ann Surg Oncol. 2019;26(11):3745–55.

    Article  PubMed  Google Scholar 

  47. Yeong J, Lim JCT, Lee B, et al. Prognostic value of CD8+ PD-1+ immune infiltrates and PDCD1 gene expression in triple negative breast cancer. J Immunother Cancer. 2019;7(1):1–13.

    Article  Google Scholar 

  48. Li C, Qiu S, Jin K, et al. Tumor-derived microparticles promote the progression of triple-negative breast cancer via PD-L1-associated immune suppression. Cancer Lett. 2021;523:43–56.

    Article  CAS  PubMed  Google Scholar 

  49. Collier JL, Weiss SA, Pauken KE, et al. Not-so-opposite ends of the spectrum: CD8+ T cell dysfunction across chronic infection, cancer and autoimmunity. Nat Immunol. 2021;22(7):809–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Galletti G, De Simone G, Mazza E, et al. Two subsets of stem-like CD8+ memory T cell progenitors with distinct fate commitments in humans. Nat Immunol. 2020;21(12):1552–62.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Held W, Siddiqui I, Schaeuble K, et al. Intratumoral CD8+ T cells with stem cell–like properties: implications for cancer immunotherapy. Sci Transl Med. 2019;11(515):eaay6863.

    Article  CAS  PubMed  Google Scholar 

  52. Shin JM, Lee CH, Son S, et al. Sulfisoxazole elicits robust antitumour immune response along with immune checkpoint therapy by inhibiting exosomal PD-L1. Adv Sci. 2021. https://doi.org/10.1002/advs.202103245.

    Article  Google Scholar 

  53. Wang X, Shen H, He Q, et al. Exosomes derived from exhausted CD8+ T cells impaired the anticancer function of normal CD8+ T cells. J Med Genet. 2019;56(1):29–31.

    Article  CAS  PubMed  Google Scholar 

  54. Chen J, Song Y, Miao F, et al. PDL1-positive exosomes suppress antitumor immunity by inducing tumor-specific CD8+ T cell exhaustion during metastasis. Cancer Sci. 2021;112(9):3437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao X, Yuan C, Wangmo D, et al. Tumor-secreted extracellular vesicles regulate T-cell costimulation and can be manipulated to induce tumor-specific T-cell responses. Gastroenterology. 2021;161(2):560-574.e11.

    Article  CAS  PubMed  Google Scholar 

  56. Ning Y, Shen K, Wu Q, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol Lett. 2018;199:36–43.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao Y, Liu L, Sun R, et al. Exosomes in cancer immunoediting and immunotherapy. Asian J Pharma Sci. 2022. https://doi.org/10.1016/j.ajps.2021.12.001.

    Article  Google Scholar 

  58. Yan K, Da T-T, Bian Z-H, et al. Multi-omics analysis identifies FoxO1 as a regulator of macrophage function through metabolic reprogramming. Cell Death Dis. 2020;11(9):1–14.

    Article  Google Scholar 

  59. Zhu Z, Zhang H, Chen B, et al. PD-L1-mediated immunosuppression in glioblastoma is associated with the infiltration and M2-polarization of tumor-associated macrophages. Front Immunol. 2020;11:2977.

    Article  Google Scholar 

  60. Gabrusiewicz K, Li X, Wei J, et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology. 2018;7(4): e1412909.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu J, Fan L, Yu H, et al. Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology. 2019;70(1):241–58.

    CAS  PubMed  Google Scholar 

  62. Yao X, Tu Y, Xu Y, et al. Endoplasmic reticulum stress-induced exosomal miR-27a-3p promotes immune escape in breast cancer via regulating PD-L1 expression in macrophages. J Cell Mol Med. 2020;24(17):9560–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zomer A, Maynard C, Verweij FJ, et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161(5):1046–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu S, Sun R, Tan B, et al. The half-life-extended IL21 can be combined with multiple checkpoint inhibitors for tumor immunotherapy. Front Cell Dev Biol. 2021. https://doi.org/10.3389/fcell.2021.779865.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cervera-Carrascon V, Quixabeira DC, Santos JM, et al. Adenovirus armed with TNFa and IL2 added to aPD-1 regimen mediates antitumor efficacy in tumors refractory to aPD-1. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.706517.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tucci M, Passarelli A, Mannavola F, et al. Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma. Oncoimmunology. 2018;7(2): e1387706.

    Article  PubMed  Google Scholar 

  67. Hui E, Cheung J, Zhu J, et al. T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition. Science. 2017;355(6332):1428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Del Re M, Marconcini R, Pasquini G, et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer. 2018;118(6):820–4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tamminga M, De Wit S, Hiltermann TJN, et al. Circulating tumor cells in advanced non-small cell lung cancer patients are associated with worse tumor response to checkpoint inhibitors. J Immunother Cancer. 2019;7(1):1–9.

    Article  Google Scholar 

  70. Cordonnier M, Nardin C, Chanteloup G, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles. 2020;9(1):1710899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hui R, Garon E, Goldman J, et al. Pembrolizumab as first-line therapy for patients with PD-L1-positive advanced non-small cell lung cancer: a phase 1 trial. Ann Oncol. 2017;28(4):874–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aguiar PN Jr, De Mello RA, Hall P, et al. PD-L1 expression as a predictive biomarker in advanced non-small-cell lung cancer: updated survival data. Immunotherapy. 2017;9(6):499–506.

    Article  CAS  PubMed  Google Scholar 

  73. D’Angelo SP, Larkin J, Sosman JA, et al. Efficacy and safety of nivolumab alone or in combination with ipilimumab in patients with mucosal melanoma: a pooled analysis. J Clin Oncol. 2017;35(2):226.

    Article  PubMed  Google Scholar 

  74. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lux A, Kahlert C, Grützmann R, et al. c-Met and PD-L1 on circulating exosomes as diagnostic and prognostic markers for pancreatic cancer. Int J Mol Sci. 2019;20(13):3305.

    Article  CAS  PubMed Central  Google Scholar 

  76. Li C, Li C, Zhi C, et al. Clinical significance of PD-L1 expression in serum-derived exosomes in NSCLC patients. J Transl Med. 2019;17(1):1–10.

    Article  Google Scholar 

  77. McLaughlin J, Han G, Schalper KA, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non–small-cell lung cancer. JAMA Oncol. 2016;2(1):46–54.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhou J, Mahoney KM, Giobbie-Hurder A, et al. Soluble PD-L1 as a biomarker in malignant melanoma treated with checkpoint blockade. Cancer Immunol Res. 2017;5(6):480–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kumagai S, Togashi Y, Kamada T, et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol. 2020;21(11):1346–58.

    Article  CAS  PubMed  Google Scholar 

  80. Gong B, Kiyotani K, Sakata S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non–small cell lung cancer. J Exp Med. 2019;216(4):982–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dai Phung C, Pham TT, Nguyen HT, et al. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater. 2020;115:371–82.

    Article  Google Scholar 

  82. Shi S, Rao Q, Zhang C, et al. Dendritic cells pulsed with exosomes in combination with PD-1 antibody increase the efficacy of sorafenib in hepatocellular carcinoma model. Trans Oncol. 2018;11(2):250–8.

    Article  Google Scholar 

  83. Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17(6):816–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Li C-W, Lim S-O, Xia W, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7(1):1–11.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the approval from Ethical Committee of Kurdistan University of Medical Sciences (The ethical code: IR.MUK.REC.1401.112).

Funding

No funding is received for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keywan Mortezaee.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortezaee, K., Majidpoor, J. Extracellular vesicle-based checkpoint regulation and immune state in cancer. Med Oncol 39, 225 (2022). https://doi.org/10.1007/s12032-022-01837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01837-2

Keywords

Navigation