Skip to main content

Advertisement

Log in

ErbB2 promotes breast cancer metastatic potential via HSF1/LDHA axis-mediated glycolysis

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

ErbB2 is overexpressed in approximately 25% of breast cancer cases and promotes metastatic potential. We previously reported that ErbB2 promoted glycolysis via heat shock factor 1 (HSF1)/lactate dehydrogenase A (LDHA) axis and ErbB2-mediated glycolysis was required for the growth of breast cancer cells. However, the importance of HSF1/LDHA axis-mediated glycolysis in ErbB2-enhanced metastatic potential remains to be elucidated. In this study, we investigated the effect of HSF1/LDHA axis-mediated glycolysis on migration and invasion in breast cancer cells. Firstly, we demonstrated that ErbB2-mediated migration and invasion were dependent on glycolysis in breast cancer cells. Secondly, we found that HSF1/LDHA axis played an important role in glycolysis, which contributed to ErbB2-enhanced migration and invasion. Finally, we showed that ErbB2 was positively correlated with HSF1/LDHA axis in invasive breast cancer patients via GEO analysis. Taken together, ErbB2 promoted metastatic potential of breast cancer cells via HSF1/LDHA axis-mediated glycolysis. And our findings indicated that targeting HSF1/LDHA axis may be a promising strategy to treat ErbB2-overexpressing breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.

    Article  CAS  PubMed  Google Scholar 

  2. Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–64.

    Article  CAS  PubMed  Google Scholar 

  3. Hirschhaeuser F, Sattler UG, Mueller-Klieser W. Lactate: a metabolic key player in cancer. Cancer Res. 2011;71:6921–5.

    Article  CAS  PubMed  Google Scholar 

  4. San-Millan I, Brooks GA. Reexamining cancer metabolism: lactate production for carcinogenesis could be the purpose and explanation of the Warburg effect. Carcinogenesis. 2017;38:119–33.

    CAS  PubMed  Google Scholar 

  5. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.

    Article  CAS  PubMed  Google Scholar 

  6. Weigelt B, Peterse JL, van't Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005;5:591–602.

    Article  CAS  PubMed  Google Scholar 

  7. Zhao YH, Zhou M, Liu H, Ding Y, Khong HT, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene. 2009;28:3689–701.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou L, Jiang S, Fu Q, Smith K, Tu K, et al. FASN, ErbB2-mediated glycolysis is required for breast cancer cell migration. Oncol Rep. 2016;35:2715–22.

    Article  CAS  PubMed  Google Scholar 

  9. Dai C, Whitesell L, Rogers AB, Lindquist S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 2007;130:1005–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol. 2018;19:4–19.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang S, Tu K, Fu Q, Schmitt DC, Zhou L, et al. Multifaceted roles of HSF1 in cancer. Tumour Biol. 2015;36:4923–31.

    Article  CAS  PubMed  Google Scholar 

  12. Carpenter RL, Paw I, Dewhirst MW, Lo HW. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene. 2015;34:546–57.

    Article  CAS  PubMed  Google Scholar 

  13. Fang F, Chang R, Yang L. Heat shock factor 1 promotes invasion and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer. 2012;118:1782–94.

    Article  CAS  PubMed  Google Scholar 

  14. Gokmen-Polar Y, Badve S. Upregulation of HSF1 in estrogen receptor positive breast cancer. Oncotarget. 2016;7:84239–45.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nakamura Y, Fujimoto M, Fukushima S, Nakamura A, Hayashida N, et al. Heat shock factor 1 is required for migration and invasion of human melanoma in vitro and in vivo. Cancer Lett. 2014;354:329–35.

    Article  CAS  PubMed  Google Scholar 

  16. Santagata S, Hu R, Lin NU, Mendillo ML, Collins LC, et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci USA. 2011;108:18378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xi C, Hu Y, Buckhaults P, Moskophidis D, Mivechi NF. Heat shock factor Hsf1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis. J Biol Chem. 2012;287:35646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Augoff K, Hryniewicz-Jankowska A, Tabola R. Lactate dehydrogenase 5: an old friend and a new hope in the war on cancer. Cancer Lett. 2015;358:1–7.

    Article  CAS  PubMed  Google Scholar 

  19. Miao P, Sheng S, Sun X, Liu J, Huang G. Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life. 2013;65:904–10.

    Article  CAS  PubMed  Google Scholar 

  20. Girgis H, Masui O, White NM, Scorilas A, Rotondo F, et al. Lactate dehydrogenase A is a potential prognostic marker in clear cell renal cell carcinoma. Mol Cancer. 2014;13:101.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rong Y, Wu W, Ni X, Kuang T, Jin D, et al. Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biol. 2013;34:1523–30.

    Article  CAS  PubMed  Google Scholar 

  22. Xian ZY, Liu JM, Chen QK, Chen HZ, Ye CJ, et al. Inhibition of LDHA suppresses tumor progression in prostate cancer. Tumour Biol. 2015;36:8093–100.

    Article  CAS  PubMed  Google Scholar 

  23. Xiao X, Huang X, Ye F, Chen B, Song C, et al. The miR-34a-LDHA axis regulates glucose metabolism and tumor growth in breast cancer. Sci Rep. 2016;6:21735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34.

    Article  CAS  PubMed  Google Scholar 

  25. Gao S, Tu DN, Li H, Jiang JX, Cao X, et al. Pharmacological or genetic inhibition of LDHA reverses tumor progression of pediatric osteosarcoma. Biomed Pharmacother. 2016;81:388–93.

    Article  CAS  PubMed  Google Scholar 

  26. Jiang F, Ma S, Xue Y, Hou J, Zhang Y. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer. Biochem Biophys Res Commun. 2016;469:985–92.

    Article  CAS  PubMed  Google Scholar 

  27. Jin L, Chun J, Pan C, Alesi GN, Li D, et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene. 2017;36:3797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rizwan A, Serganova I, Khanin R, Karabeber H, Ni X, et al. Relationships between LDH-A, lactate, and metastases in 4T1 breast tumors. Clin Cancer Res. 2013;19:5158–69.

    Article  CAS  PubMed  Google Scholar 

  29. Yuan G, Qian L, Shi M, Lu F, Li D, et al. HER2-dependent MMP-7 expression is mediated by activated STAT3. Cell Signal. 2008;20:1284–91.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang R, Su J, Xue SL, Yang H, Ju LL, et al. HPV E6/p53 mediated down-regulation of miR-34a inhibits Warburg effect through targeting LDHA in cervical cancer. Am J Cancer Res. 2016;6:312–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Appert-Collin A, Hubert P, Cremel G, Bennasroune A. Role of ErbB receptors in cancer cell migration and invasion. Front Pharmacol. 2015;6:283.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jeon M, Lee J, Nam SJ, Shin I, Lee JE, et al. Induction of fibronectin by HER2 overexpression triggers adhesion and invasion of breast cancer cells. Exp Cell Res. 2015;333:116–26.

    Article  CAS  PubMed  Google Scholar 

  33. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98:262–72.

    Article  CAS  PubMed  Google Scholar 

  34. Toma-Jonik A, Widlak W, Korfanty J, Cichon T, Smolarczyk R, et al. Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation. Cell Signal. 2015;27:394–401.

    Article  CAS  PubMed  Google Scholar 

  35. Faubert B, Li KY, Cai L, Hensley CT, Kim J, et al. Lactate metabolism in human lung tumors. Cell. 2017;171:358–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017;551:115–8.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK Cells. Cell Metab. 2016;24:657–71.

    Article  CAS  PubMed  Google Scholar 

  38. Baumann F, Leukel P, Doerfelt A, Beier CP, Dettmer K, et al. Lactate promotes glioma migration by TGF-beta2-dependent regulation of matrix metalloproteinase-2. Neuro Oncol. 2009;11:368–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stern R, Shuster S, Neudecker BA, Formby B. Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res. 2002;276:24–31.

    Article  CAS  PubMed  Google Scholar 

  40. Ji Y, Yang C, Tang Z, Yang Y, Tian Y, et al. Adenylate kinase hCINAP determines self-renewal of colorectal cancer stem cells by facilitating LDHA phosphorylation. Nat Commun. 2017;8:15308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Ming Shi (Institute of Basic Medical Sciences, Beijing, China) for providing MCF7/ErbB2 cell line. We thank Dr. Guan Wang (State Key Laboratory of Biotherapy, Sichuan University, China) for assistance with GEO analysis. We thank Kelly Smith (Mitchell Cancer Institute, University of South Alabama, USA) for polishing this paper.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81272907).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YZ and RY; Methodology: LH, SL, and YZ; Formal analysis and investigation: LH, SL, XM, and SJ; FZ; Writing-original draft preparation: LH; Writing-review and editing: YZ and SL; Funding acquisition: YZ; Resources: YZ; Supervision: YZ and RY. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Rong Yu or Yuhua Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Lv, S., Ma, X. et al. ErbB2 promotes breast cancer metastatic potential via HSF1/LDHA axis-mediated glycolysis. Med Oncol 39, 45 (2022). https://doi.org/10.1007/s12032-021-01641-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01641-4

Keywords

Navigation