Skip to main content

Advertisement

Log in

Multifaceted roles of HSF1 in cancer

  • Review
  • Published:
Tumor Biology

Abstract

Heat shock transcription factor 1 (HSF1) is the master regulator of the heat shock response. Accumulating evidence shows that HSF1 is overexpressed in a variety of human cancers, is associated with cancer aggressiveness, and could serve as an independent diagnostic or prognostic biomarker. In this review, we will provide an overview of the multifaceted roles of HSF1 in cancer, with a special focus on the four underlying molecular mechanisms involved. First, HSF1 regulates the expression of heat shock proteins (HSPs) including HSP90, HSP70, and HSP27. Second, HSF1 regulates cellular metabolism, including glycolysis and lipid metabolism. Third, HSF1 serves as a regulator of different signaling pathways, such as HuR-HIF-1, Slug, protein kinase C (PKC), nuclear factor-kappaB (NF-κB), PI3K-AKT-mTOR, and mitogen-activated protein kinase (MAPK) pathways. Finally, HSF1 regulates microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Overall, HSF1 plays many important roles in cancer via regulating cell proliferation, anti-apoptosis, epithelial-mesenchymal transition (EMT), migration, invasion, and metastasis and may be a potential therapeutic target for human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pirkkala L, Nykanen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 2001;15:1118–31.

    Article  CAS  PubMed  Google Scholar 

  2. Sorger PK. Heat shock factor and the heat shock response. Cell. 1991;65:363–6.

    Article  CAS  PubMed  Google Scholar 

  3. Westerheide SD, Morimoto RI. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem. 2005;280:33097–100.

    Article  CAS  PubMed  Google Scholar 

  4. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5:761–72.

    Article  CAS  PubMed  Google Scholar 

  5. Chuma M, Sakamoto N, Nakai A, Hige S, Nakanishi M, Natsuizaka M, et al. Heat shock factor 1 accelerates hepatocellular carcinoma development by activating nuclear factor-kappaB/mitogen-activated protein kinase. Carcinogenesis. 2014;35:272–81.

    Article  CAS  PubMed  Google Scholar 

  6. Fang F, Chang R, Yang L. Heat shock factor 1 promotes invasion and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer. 2012;118:1782–94.

    Article  CAS  PubMed  Google Scholar 

  7. Santagata S, Hu R, Lin NU, Mendillo ML, Collins LC, Hankinson SE, et al. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci U S A. 2011;108:18378–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Engerud H, Tangen IL, Berg A, Kusonmano K, Halle MK, Oyan AM, et al. High level of HSF1 associates with aggressive endometrial carcinoma and suggests potential for HSP90 inhibitors. Br J Cancer. 2014;111:78–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ishiwata J, Kasamatsu A, Sakuma K, Iyoda M, Yamatoji M, Usukura K, et al. State of heat shock factor 1 expression as a putative diagnostic marker for oral squamous cell carcinoma. Int J Oncol. 2012;40:47–52.

    CAS  PubMed  Google Scholar 

  10. Hoang AT, Huang J, Rudra-Ganguly N, Zheng J, Powell WC, Rabindran SK, et al. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol. 2000;156:857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cen H, Zheng S, Fang YM, Tang XP, Dong Q. Induction of HSF1 expression is associated with sporadic colorectal cancer. World J Gastroenterol. 2004;10:3122–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 2014;158:564–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dai C, Whitesell L, Rogers AB, Lindquist S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 2007;130:1005–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gabai VL, Meng L, Kim G, Mills TA, Benjamin IJ, Sherman MY. Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein HuR. Mol Cell Biol. 2012;32:929–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xi C, Hu Y, Buckhaults P, Moskophidis D, Mivechi NF. Heat shock factor Hsf1 cooperates with ErbB2 (Her2/Neu) protein to promote mammary tumorigenesis and metastasis. J Biol Chem. 2012;287:35646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meng L, Gabai VL, Sherman MY. Heat-shock transcription factor HSF1 has a critical role in human epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene. 2010;29:5204–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, et al. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell. 2012;150:549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Craig EA. The heat shock response. CRC Crit Rev Biochem. 1985;18:239–80.

    Article  CAS  PubMed  Google Scholar 

  19. Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol. 2013;87:19–48.

    Article  CAS  PubMed  Google Scholar 

  20. Schulz R, Streller F, Scheel AH, Ruschoff J, Reinert MC, Dobbelstein M, et al. HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis. 2014;5, e980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bellmann K, Jaattela M, Wissing D, Burkart V, Kolb H. Heat shock protein hsp70 overexpression confers resistance against nitric oxide. FEBS Lett. 1996;391:185–8.

    Article  CAS  PubMed  Google Scholar 

  22. Simon MM, Reikerstorfer A, Schwarz A, Krone C, Luger TA, Jaattela M, et al. Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. J Clin Invest. 1995;95:926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jaattela M. Escaping cell death: survival proteins in cancer. Exp Cell Res. 1999;248:30–43.

    Article  CAS  PubMed  Google Scholar 

  24. Zylicz M, King FW, Wawrzynow A. Hsp70 interactions with the p53 tumour suppressor protein. EMBO J. 2001;20:4634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fourie AM, Hupp TR, Lane DP, Sang BC, Barbosa MS, Sambrook JF, et al. HSP70 binding sites in the tumor suppressor protein p53. J Biol Chem. 1997;272:19471–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar S, Tomar MS, Acharya A. HSF1-mediated regulation of tumor cell apoptosis: a novel target for cancer therapeutics. Future Oncol. 2013;9:1573–86.

    Article  CAS  PubMed  Google Scholar 

  27. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim JW, Dang CV. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res. 2006;66:8927–30.

    Article  CAS  PubMed  Google Scholar 

  29. Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–70.

    CAS  PubMed  Google Scholar 

  30. Chen Z, Lu W, Garcia-Prieto C, Huang P. The Warburg effect and its cancer therapeutic implications. J Bioenerg Biomembr. 2007;39:267–74.

    Article  CAS  PubMed  Google Scholar 

  31. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20.

    Article  CAS  PubMed  Google Scholar 

  32. Gatenby RA, Gillies RJ. Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol. 2007;39:1358–66.

    Article  CAS  PubMed  Google Scholar 

  33. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med. 2008;49 Suppl 2:24S–42.

    Article  CAS  PubMed  Google Scholar 

  34. Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703–7.

    Article  CAS  PubMed  Google Scholar 

  35. Fantin VR, St-Pierre J, Leder P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell. 2006;9:425–34.

    Article  CAS  PubMed  Google Scholar 

  36. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, et al. p53 regulates mitochondrial respiration. Science. 2006;312:1650–3.

    Article  CAS  PubMed  Google Scholar 

  37. Schieber MS, Chandel NS. ROS links glucose metabolism to breast cancer stem cell and EMT phenotype. Cancer Cell. 2013;23:265–7.

    Article  CAS  PubMed  Google Scholar 

  38. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244:707–12.

    Article  CAS  PubMed  Google Scholar 

  39. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci U S A. 1992;89:10578–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan M, Lan KH, Yao J, Lu CH, Sun M, Neal CL, et al. Selective inhibition of ErbB2-overexpressing breast cancer in vivo by a novel TAT-based ErbB2-targeting signal transducers and activators of transcription 3-blocking peptide. Cancer Res. 2006;66:3764–72.

    Article  CAS  PubMed  Google Scholar 

  41. Tan M, Li P, Klos KS, Lu J, Lan KH, Nagata Y, et al. ErbB2 promotes Src synthesis and stability: novel mechanisms of Src activation that confer breast cancer metastasis. Cancer Res. 2005;65:1858–67.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao YH, Zhou M, Liu H, Ding Y, Khong HT, Yu D, et al. Upregulation of lactate dehydrogenase A by ErbB2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene. 2009;28:3689–701.

    Article  CAS  PubMed  Google Scholar 

  43. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77.

    Article  CAS  PubMed  Google Scholar 

  44. Siegel AB, Zhu AX. Metabolic syndrome and hepatocellular carcinoma: two growing epidemics with a potential link. Cancer. 2009;115:5651–61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jin X, Moskophidis D, Mivechi NF. Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab. 2011;14:91–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.

    Article  CAS  PubMed  Google Scholar 

  47. Gordan JD, Simon MC. Hypoxia-inducible factors: central regulators of the tumor phenotype. Curr Opin Genet Dev. 2007;17:71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110.

    Article  PubMed  Google Scholar 

  49. Hajra KM, Chen DY, Fearon ER. The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res. 2002;62:1613–8.

    CAS  PubMed  Google Scholar 

  50. Cobaleda C, Perez-Caro M, Vicente-Duenas C, Sanchez-Garcia I. Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu Rev Genet. 2007;41:41–61.

    Article  CAS  PubMed  Google Scholar 

  51. Carpenter RL, Paw I, Dewhirst MW, Lo HW. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene. 2014.

  52. Csermely P. A nonconventional role of molecular chaperones: involvement in the cytoarchitecture. News Physiol Sci. 2001;16:123–6.

    CAS  PubMed  Google Scholar 

  53. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.

    Article  CAS  PubMed  Google Scholar 

  54. Kroeger PE, Morimoto RI. Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity. Mol Cell Biol. 1994;14:7592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma ZN, Cao Y. [The relationship between the polymerization of HSF1 and the expression of IL-1beta, TNF-alpha mRNA of monocytes in fever rabbits]. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2006;22:445–9.

  56. Singh IS, He JR, Calderwood S, Hasday JD. A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J Biol Chem. 2002;277:4981–8.

    Article  CAS  PubMed  Google Scholar 

  57. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol. 2004;6:97–105.

    Article  CAS  PubMed  Google Scholar 

  58. Jacobs AT, Marnett LJ. HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. J Biol Chem. 2009;284:9176–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oda K, Stokoe D, Taketani Y, McCormick F. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65:10669–73.

    Article  CAS  PubMed  Google Scholar 

  60. Chou SD, Murshid A, Eguchi T, Gong J, Calderwood SK. HSF1 regulation of beta-catenin in mammary cancer cells through control of HuR/elavL1 expression. Oncogene. 2014.

  61. Beeram M, Patnaik A, Rowinsky EK. Raf: a strategic target for therapeutic development against cancer. J Clin Oncol. 2005;23:6771–90.

    Article  CAS  PubMed  Google Scholar 

  62. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol. 1997;137:481–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740–6.

    Article  CAS  PubMed  Google Scholar 

  64. Viala E, Pouyssegur J. Regulation of tumor cell motility by ERK mitogen-activated protein kinases. Ann N Y Acad Sci. 2004;1030:208–18.

    Article  PubMed  Google Scholar 

  65. Ciocca DR, Gago FE, Fanelli MA, Calderwood SK. Co-expression of steroid receptors (estrogen receptor alpha and/or progesterone receptors) and Her-2/neu: clinical implications. J Steroid Biochem Mol Biol. 2006;102:32–40.

    Article  CAS  PubMed  Google Scholar 

  66. O'Callaghan-Sunol C, Sherman MY. Heat shock transcription factor (HSF1) plays a critical role in cell migration via maintaining MAP kinase signaling. Cell Cycle. 2006;5:1431–7.

    Article  PubMed  Google Scholar 

  67. Dai C, Santagata S, Tang Z, Shi J, Cao J, Kwon H, et al. Loss of tumor suppressor NF1 activates HSF1 to promote carcinogenesis. J Clin Invest. 2012;122:3742–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen YF, Dong Z, Xia Y, Tang J, Peng L, Wang S, et al. Nucleoside analog inhibits microRNA-214 through targeting heat-shock factor 1 in human epithelial ovarian cancer. Cancer Sci. 2013;104:1683–9.

    Article  CAS  PubMed  Google Scholar 

  69. Das S, Bhattacharyya NP. Heat shock factor 1 regulates hsa-miR-432 expression in human cervical cancer cell line. Biochem Biophys Res Commun. 2014.

  70. Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 2011;71:3–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khaleque MA, Bharti A, Gong J, Gray PJ, Sachdev V, Ciocca DR, et al. Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene. 2008;27:1886–93.

    Article  CAS  PubMed  Google Scholar 

  72. Yang X, Wang J, Liu S, Yan Q. HSF1 and Sp1 regulate FUT4 gene expression and cell proliferation in breast cancer cells. J Cell Biochem. 2014;115:168–78.

    Article  CAS  PubMed  Google Scholar 

  73. Kajita K, Kuwano Y, Kitamura N, Satake Y, Nishida K, Kurokawa K, et al. Ets1 and heat shock factor 1 regulate transcription of the transformer 2beta gene in human colon cancer cells. J Gastroenterol. 2013;48:1222–33.

    Article  CAS  PubMed  Google Scholar 

  74. Sawai M, Ishikawa Y, Ota A, Sakurai H. The proto-oncogene JUN is a target of the heat shock transcription factor HSF1. FEBS J. 2013;280:6672–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Ming Tan (Mitchell Cancer Institute, University of South Alabama) for helping to revise our manuscript. The authors acknowledge financial support for the projects supported by National Natural Sciences Foundation of China (81272907, J1103604) and the project 2012-1707-7-7 sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhua Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Tu, K., Fu, Q. et al. Multifaceted roles of HSF1 in cancer. Tumor Biol. 36, 4923–4931 (2015). https://doi.org/10.1007/s13277-015-3674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3674-x

Keywords

Navigation