Skip to main content

Advertisement

Log in

Treating MCF7 breast cancer cell with proteasome inhibitor Bortezomib restores apoptotic factors and sensitizes cell to Docetaxel

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Chemoresistance is the leading cause of limiting long-term treatment success in cancer cells. Anticancer drugs usually kill cells through apoptosis induction and defects in this signaling pathway lead to chemoresistance. Apoptotic protease activating factor 1 regulates cellular stress evoked by chemotherapeutic agents through facilitating apoptosome assembling but can be degraded by proteasome. This study examined the role of proteasome inhibitor Bortezomib in the cytotoxic effects of Docetaxel on MCF7 cells response and its correlation with Apaf-1 expression level. MTT assay, caspase 3/7 activity assay, propidium iodide staining, adenosine triphosphate and reactive oxygen species amount measurements were utilized to demonstrate the role of Bortezomib in Docetaxel efficacy with and without Apaf-1 overexpressing. Meanwhile, two-dimensional cell migration assay was performed by scratch wound assay. The combination of Docetaxel with Bortezomib was significantly more cytotoxic compared single drug, more effectively delayed cell growth, reduced ATP level and increased ROS production. In Apaf-1 overexpressing, Docetaxel was more efficient in preventing cell migration, however, Docetaxel plus Bortezomib were not significantly effective; and fluorescence images supported the interpretation. Our findings demonstrated MCF7 resistance to Docetaxel is due in part to low Apaf-1 level and Apaf-1 overexpression resulted in the increase of cell susceptibility to Docetaxel stimulus. We assume that proteasome inhibitor may restore apoptotic proteins like Apaf-1 and prevent the degradation of cytosolic cytochrome c released by Docetaxel, consequently triggering intrinsic apoptosis and promoting cancer cell death. Collectively, treating MCF7 breast cells with proteasome inhibitor sensitizes cells to Docetaxel-induced apoptosis and possibly overcomes chemoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kerr F, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57. https://doi.org/10.1038/bjc.1972.33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000;407:802–9. https://doi.org/10.1046/j.1471-4159.2000.0740001.x.

    Article  CAS  PubMed  Google Scholar 

  3. Brenner D, Mak TW. Mitochondrial cell death effectors. Curr Opin Cell Biol. 2009;21:871–7. https://doi.org/10.1016/j.ceb.2009.09.004.

    Article  CAS  PubMed  Google Scholar 

  4. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89. https://doi.org/10.1016/s0092-8674(00)80434-1.

    Article  CAS  PubMed  Google Scholar 

  5. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90:405–13. https://doi.org/10.1016/s0092-8674(00)80501-2.

    Article  CAS  PubMed  Google Scholar 

  6. Green DR, Kroemer G. Pharmacological manipulation of cell death: clinical applications in sight? J Clin Invest. 2005;15:2610–7. https://doi.org/10.1172/JCI26321.

    Article  CAS  Google Scholar 

  7. Fox F, MacFarlane M. Targeting cell death signalling in cancer: minimising ‘Collateral damage.’ Br J Cancer. 2016;115:5–11. https://doi.org/10.1038/bjc.2016.111.Epub2016May3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jia L, Macey MG, Yin Y, Newland AC, Kelsey SM. Subcellular distribution and redistribution of Bcl-2 family proteins in human leukemia cells undergoing apoptosis. Blood. 1999;93:2353–9.

    Article  CAS  Google Scholar 

  9. El-Khattouti A, Selimovic D, Haikel Y, Hassan M. Crosstalk between apoptosis and autophagy: molecular mechanisms and therapeutic strategies in cancer. J Cell Death. 2013;6:37–55. https://doi.org/10.4137/JCD.S11034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Long JS, Ryan KM. New frontiers in promoting tumor cell death: targeting apoptosis, necroptosis and autophagy. Oncogene. 2012;31:5045–60. https://doi.org/10.1038/onc.2012.7.Epub2012Feb6.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang HG, Wang J, Yang X, Hsu HC, Mountz JD. Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene. 2004;23:2009–15. https://doi.org/10.1038/sj.onc.1207373.

    Article  CAS  PubMed  Google Scholar 

  12. Frankland-Searby S, Bhaumik SR. The 26S proteasome complex: an attractive target for cancer therapy. Biochem Biophys Acta. 2012;1825:64–76. https://doi.org/10.1016/j.bbcan.2011.10.003.

    Article  CAS  PubMed  Google Scholar 

  13. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994;78:761. https://doi.org/10.1016/S0092-8674(94)90462-6.

    Article  CAS  PubMed  Google Scholar 

  14. Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol. 2001;8:739–58. https://doi.org/10.1016/S1074-5521(01)00056-4.

    Article  CAS  PubMed  Google Scholar 

  15. Adams J, Kauffman M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest. 2004;22:304–11. https://doi.org/10.1081/cnv-120030218.

    Article  CAS  PubMed  Google Scholar 

  16. Shah SA, Potter MW, McDade TP, Ricciardi R, Perugini RA, Elliott PJ, Adams J, Callery MP. 26S proteasome inhibition induces apoptosis and limits growth of human pancreatic cancer. J Cell Biochem. 2001;82:110–22. https://doi.org/10.1002/jcb.1150.

    Article  CAS  PubMed  Google Scholar 

  17. Jones SE, Erban J, Overmoyer B, et al. Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J Clin Oncol. 2005;23:5542–51. https://doi.org/10.1200/JCO.2005.02.027.

    Article  CAS  PubMed  Google Scholar 

  18. Eisenhauer EA, Vermorken JB. The toxoids. Comparative clinical pharmacology and therapeutic potential. Drugs. 1998;55:5–30. https://doi.org/10.2165/00003495-199855010-00002.

    Article  CAS  PubMed  Google Scholar 

  19. Karimzadeh S, Hosseinkhani S, Fathi A, Ataei F, Baharvand H. Insufficient Apaf-1 expression in early stages of neural differentiation of human embryonic stem cells might protect them from apoptosis. Eur J Cell Biol. 2018;97:126–35. https://doi.org/10.1016/J.EJCB.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  20. Amroudie MN, Ataei F. Experimental and theoretical study of IBC domain from human IP3R2; molecular cloning, bacterial expression and protein purification. Int J Biol Macromol. 2019;124:1321–7. https://doi.org/10.1016/j.ijbiomac.2018.09.117.

    Article  CAS  PubMed  Google Scholar 

  21. Ataei F, Torkzadeh-Mahani M, Hosseinkhani S. A novel luminescent biosensor for rapid monitoring of IP3 by split-luciferase complementary assay. Biosen Bioelectron. 2013;41:642–8. https://doi.org/10.1016/J.BIOS.2012.09.037.

    Article  CAS  Google Scholar 

  22. Abazari R, Mahjoub AR, Ataei F, Morsali A, Carpenter-Warren CL, Mehdizadeh K, Slawin AMZ. Chitosan immobilization on Bio-MOF nanostructures: a biocompatible pH-responsive nanocarrier for doxorubicin release on MCF-7 cell lines of human breast cancer. Inorg Chem. 2018;57:13364–79. https://doi.org/10.1021/acs.inorgchem.8b01955.

    Article  CAS  PubMed  Google Scholar 

  23. Mehdizadeh K, Ataei F, Hosseinkhani S. Effects of doxorubicin and docetaxel on susceptibility to apoptosis in high expression level of survivin in HEK and HEK-S cell lines as in vitro models. Biochem Biophys Res Commun. 2020;532:139–44. https://doi.org/10.1016/j.bbrc.2020.08.028.

    Article  CAS  PubMed  Google Scholar 

  24. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. https://doi.org/10.1006/abio.1976.9999.

    Article  CAS  Google Scholar 

  25. Pakravan K, Babashah S, Mowla SJ, Mossahebi-Mohammad M, Ataei F, Dana N, Javan M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol. 2017;40:457–70. https://doi.org/10.1007/s13402-017-0335-7.

    Article  CAS  Google Scholar 

  26. Wang X, Luo H, Chen H, Duguid W, Wu J. Role of proteasomes in T cell activation and proliferation. J Immunol. 1998;160:788–801.

    CAS  PubMed  Google Scholar 

  27. Marshansky V, Wang X, Bertrand R, Luo H, Duguid W, Chinnadurai G, Kanaan N, Diem VM, Wu J. Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol. 2001;166:3130–42. https://doi.org/10.4049/jimmunol.166.5.3130.

    Article  CAS  PubMed  Google Scholar 

  28. Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y. Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ. 2005;12:1390–7. https://doi.org/10.1038/sj.cdd.4401661.

    Article  CAS  PubMed  Google Scholar 

  29. Le Bras M, Clément MV, Pervaiz S, Brenner C. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol. 2005;20:205–19. https://doi.org/10.14670/HH-20.205.

    Article  PubMed  Google Scholar 

  30. Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc. 2007;2:329–33. https://doi.org/10.1038/nprot.2007.30.

    Article  CAS  PubMed  Google Scholar 

  31. Houshdarpour R, Ataei F, Hosseinkhani S. Efficient stable cell line generation of survivin as an in vitro model for specific functional analysis in apoptosis and drug screening. Mol Biotechnol. 2021. https://doi.org/10.1007/s12033-021-00313-y.

    Article  PubMed  Google Scholar 

  32. Richardson PG, Barlogie B, Berenson J, et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med. 2003;348:2609–17. https://doi.org/10.1056/NEJMoa030288.

    Article  CAS  PubMed  Google Scholar 

  33. Adams J, Palombella VJ, Elliott PJ. Proteasome inhibition: a new strategy in cancer treatment. Invest New Drugs. 2000;18:109–21. https://doi.org/10.1023/a:1006321828515.

    Article  CAS  PubMed  Google Scholar 

  34. Messersmith WA, Baker SD, Lassiter L, Sullivan RA, Dinh K, Almuete VI, Wright JJ, Donehower RC, Carducci MA, Armstrong DK. Phase I trial of bortezomib in combination with docetaxel in patients with advanced solid tumors. Clin Cancer Res. 2006;12:1270–5. https://doi.org/10.1158/1078-0432.CCR-05-1942.

    Article  CAS  PubMed  Google Scholar 

  35. Tsujimoto Y. Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ. 2007;4:429–34. https://doi.org/10.1038/sj.cdd.4400262.

    Article  Google Scholar 

  36. Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016;9:e2253. https://doi.org/10.1038/cddis.2016.105.

    Article  CAS  Google Scholar 

  37. Brentnall M, Rodriguez-Menocal L, De Guevara RL, Cepero E, Boise LH. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013;9:32. https://doi.org/10.1186/1471-2121-14-32.

    Article  CAS  Google Scholar 

  38. Essmann F, Engels IH, Totzke G, Schulze-Osthoff K, Janicke RU. Apoptosis resistance of MCF-7 breast carcinoma cells to ionizing radiation is independent of p53 and cell cycle control but caused by the lack of caspase-3 and a caffeine-inhibitable event. Cancer Res. 2004;64:7065–72. https://doi.org/10.1158/0008-5472.CAN-04-1082.

    Article  CAS  PubMed  Google Scholar 

  39. Janick RU. MCF-7 breast cancer cells do not express caspase-3. Breast Cancer Res Treat. 2009;117:219–21. https://doi.org/10.1007/s10549-008-0217-9.

    Article  Google Scholar 

  40. Liang Y, Yan C, Schor NF. Apoptosis the in the absence of caspase 3. Oncogene. 2001;20:6570–8. https://doi.org/10.1038/sj.onc.1204815.

    Article  CAS  PubMed  Google Scholar 

  41. Anichini A, Mortarini R, Sensi M, Zanon M. APAF-1 signaling in human melanoma. Cancer Lett. 2006;238:168–79. https://doi.org/10.1016/j.canlet.2005.06.034.

    Article  CAS  PubMed  Google Scholar 

  42. Gama V, et al. PARC/CUL9 mediates the degradation of mitochondrial-released cytochrome c and promotes survival in neurons and cancer cells. Sci Signal. 2014;7:ra67. https://doi.org/10.1126/scisignal.2005309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the research council of Tarbiat Modares University through a grant (#D/2003) to cell death and differentiation research program, and Iranian National Science Foundation (INSF, project 93043373) for the financial support of this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farangis Ataei.

Ethics declarations

Conflict of interest

There is no conflict of interest to disclose.

Informed consent

All authors agree to submit this article for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdizadeh, K., Ataei, F. & Hosseinkhani, S. Treating MCF7 breast cancer cell with proteasome inhibitor Bortezomib restores apoptotic factors and sensitizes cell to Docetaxel. Med Oncol 38, 64 (2021). https://doi.org/10.1007/s12032-021-01509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01509-7

Keywords

Navigation