Skip to main content

Advertisement

Log in

Exosomes and cancer: from molecular mechanisms to clinical applications

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Exosomes are extracellular nanovesicles secreted from almost all types of normal and cancer cells. Collective evidence suggests that exosomes participate in cell–cell communication via transmitting their cargo, including nucleic acids, proteins, and metabolites to recipient cells. Tumor-derived exosomes (TEXs) play prominent roles in the regulation of molecular pathways in malignancies. Internalization of exosomes by tumor cells affects cellular pathways and several cancer hallmarks, including reprogramming of stromal cells, modulating immune responses, reconstructing extracellular matrix architecture, or even endowing tumor cells with drug features resistance. The unique biogenesis pathways of exosomes, their composition, low immunogenicity, and nontoxicity, together with their ability to target tumor cells, bring them up as an attractive vesicles for cancer therapy. Thus, understanding the molecular mechanisms of exosomes' participation in tumorigenesis will be critical for the next generation of cancer therapeutics. This review aims to summarize the exosomes' roles in different mechanisms underlying cancer progression for the rational design of tailored strategies against this illness. The present study also highlights the new findings on using these smart vesicles as therapeutic targets and potential biomarkers. Recent advances in exosome biology will open up new, more effective, less invasive, and more individualized clinical applications for treating cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ABCs:

ATP-binding cassette transporters

AD:

Alzheimer's disease

Aβ:

β-Amyloid

bFGF:

Basic fibroblast growth factor

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

DCs:

Dendritic cells

EMT:

Epithelial to mesenchymal transition

ERK1/2:

Extracellular signal‑regulated protein kinase

EVs:

Extracellular vesicles

FAK:

Focal adhesion kinase

HSP:

Heat shock protein

IFN:

Interferon

IL:

Interleukin

MAPK:

Mitogen-activated protein kinase

MHC:

Major histocompatibility complex

MMP:

Matrix metalloproteinase

MSCs:

Mesenchymal stem cells

MVBs:

Multivesicular bodies

NF-κB:

Nuclear factor κB

NOS:

Nitric oxide synthase

NSCLC:

Non-small cell lung cancer

PD-1:

Programmed death 1

PDGF:

Platelet-derived growth factor

P-gp:

P-glycoprotein

PI3K/Akt:

Phosphoinositide 3-kinase/protein kinase B

TERT:

Telomerase reverse transcriptase

TEXs:

Tumor-derived exosomes

TGF-β:

Transforming growth factor β

TME:

Tumor microenvironment

VEGF:

Vascular endothelial growth factor

References

  1. Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Zali H, Niknejad H. Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res Ther. 2021;12:126. https://doi.org/10.1186/s13287-021-02196-x.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Babajani A, Soltani P, Jamshidi E, Farjoo MH, Niknejad H. Recent advances on drug-loaded mesenchymal stem cells with anti-neoplastic agents for targeted treatment of cancer. Front Bioeng Biotechnol. 2020;8:748. https://doi.org/10.3389/fbioe.2020.00748.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dai J, Su Y, Zhong S, Cong L, Liu B, Yang J, et al. Exosomes: key players in cancer and potential therapeutic strategy. Signal Transduct Target Ther. 2020;5:145. https://doi.org/10.1038/s41392-020-00261-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987;262:9412–20.

    Article  CAS  PubMed  Google Scholar 

  5. Vidal M. Exosomes: revisiting their role as “garbage bags.” Traffic. 2019;20:815–28. https://doi.org/10.1111/tra.12687.

    Article  CAS  PubMed  Google Scholar 

  6. Wu R, Gao W, Yao K, Ge J. Roles of exosomes derived from immune cells in cardiovascular diseases. Front Immunol. 2019;10:648. https://doi.org/10.3389/fimmu.2019.00648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jamshidi E, Babajani A, Soltani P, Niknejad H. Proposed mechanisms of targeting COVID-19 by delivering mesenchymal stem cells and their exosomes to damaged organs. Stem Cell Rev Rep. 2021. https://doi.org/10.1007/s12015-020-10109-3.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barceló M, Castells M, Bassas L, Vigués F, Larriba S. Semen miRNAs contained in exosomes as non-invasive biomarkers for prostate cancer diagnosis. Sci Rep. 2019;9:13772. https://doi.org/10.1038/s41598-019-50172-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sagredo AI, Sepulveda SA, Roa JC, Oróstica L. Exosomes in bile as potential pancreatobiliary tumor biomarkers. Trans Cancer Res. 2017. https://doi.org/10.21037/tcr.2017.10.37.

    Article  Google Scholar 

  10. Kumar SR, Kimchi ET, Manjunath Y, Gajagowni S, Stuckel AJ, Kaifi JT. RNA cargos in extracellular vesicles derived from blood serum in pancreas associated conditions. Sci Rep. 2020;10:2800. https://doi.org/10.1038/s41598-020-59523-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mirza AH, Kaur S, Nielsen LB, Størling J, Yarani R, Roursgaard M, et al. Breast milk-derived extracellular vesicles enriched in exosomes from mothers with type 1 diabetes contain aberrant levels of microRNAs. Front Immunol. 2019;10:2543. https://doi.org/10.3389/fimmu.2019.02543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pisitkun T, Shen R-F, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004. https://doi.org/10.1073/pnas.0403453101.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Michael A, Bajracharya SD, Yuen PST, Zhou H, Star RA, Illei GG, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010;16:34–8. https://doi.org/10.1111/j.1601-0825.2009.01604.x.

    Article  CAS  PubMed  Google Scholar 

  14. Capello M, Vykoukal JV, Katayama H, Bantis LE, Wang H, Kundnani DL, et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat Commun. 2019;10:254. https://doi.org/10.1038/s41467-018-08109-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ogorevc E, Kralj-Iglic V, Veranic P. The role of extracellular vesicles in phenotypic cancer transformation. Radiol Oncol. 2013. https://doi.org/10.2478/raon-2013-0037.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang W, Zhou Q, Wei Y, Da M, Zhang C, Zhong J, et al. The exosome-mediated PI3k/Akt/mTOR signaling pathway in cervical cancer. Int J Clin Exp Pathol. 2019;12:2474–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Y, Liu F, Yuan Y, Jin C, Chang C, Zhu Y, et al. Inflammasome-derived exosomes activate NF-κB signaling in macrophages. J Proteome Res. 2017;16:170–8. https://doi.org/10.1021/acs.jproteome.6b00599.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Z, Wu C, Zou X, Shen W, Yang J, Zhang X, et al. Exosomes derived from mesenchymal stem cells inhibit neointimal hyperplasia by activating the Erk1/2 signalling pathway in rats. Stem Cell Res Ther. 2020;11:220. https://doi.org/10.1186/s13287-020-01676-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dovrat S, Caspi M, Zilberberg A, Lahav L, Firsow A, Gur H, et al. 14–3-3 and β-catenin are secreted on extracellular vesicles to activate the oncogenic Wnt pathway. Mol Oncol. 2014;8:894–911. https://doi.org/10.1016/j.molonc.2014.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shelke GV, Yin Y, Jang SC, Lässer C, Wennmalm S, Hoffmann HJ, et al. Endosomal signalling via exosome surface TGFβ-1. J Extracell Vesicles. 2019. https://doi.org/10.1080/20013078.2019.1650458.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang Q, Lu Q. Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling. Nat Commun. 2017;8:709. https://doi.org/10.1038/s41467-017-00767-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4:214–22. https://doi.org/10.1016/j.scr.2009.12.003.

    Article  CAS  PubMed  Google Scholar 

  23. Liu W, Bai X, Zhang A, Huang J, Xu S, Zhang J. Role of exosomes in central nervous system diseases. Front Mol Neurosci. 2019;12:240. https://doi.org/10.3389/fnmol.2019.00240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang S, Hou Y, Yang J, Xie D, Jiang L, Hu H, et al. Application of mesenchymal stem cell exosomes and their drug-loading systems in acute liver failure. J Cell Mol Med. 2020;24:7082–93. https://doi.org/10.1111/jcmm.15290.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang B, Yao K, Huuskes BM, Shen H-H, Zhuang J, Godson C, et al. Mesenchymal stem cells deliver exogenous MicroRNA-let7c via exosomes to attenuate renal fibrosis. Mol Ther. 2016;24:1290–301. https://doi.org/10.1038/mt.2016.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ye S-B, Li Z-L, Luo D-H, Huang B-J, Chen Y-S, Zhang X-S, et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014;5:5439–52. https://doi.org/10.18632/oncotarget.2118.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mittelbrunn M, Sánchez-Madrid F. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol. 2012;13:328–35. https://doi.org/10.1038/nrm3335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bellingham SA, Guo BB, Coleman BM, Hill AF. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol. 2012;3:124. https://doi.org/10.3389/fphys.2012.00124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jung MK, Mun JY. Sample preparation and imaging of exosomes by transmission electron microscopy. J Vis Exp. 2018. https://doi.org/10.3791/56482.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin. 2017. https://doi.org/10.1038/aps.2017.12.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010. https://doi.org/10.1016/j.jprot.2010.06.006.

    Article  PubMed  Google Scholar 

  32. Llorente A, Skotland T, Sylvänne T, Kauhanen D, Róg T, Orłowski A, et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta. 2013;1831:1302–9. https://doi.org/10.1016/j.bbalip.2013.04.011.

    Article  CAS  PubMed  Google Scholar 

  33. Escrevente C, Grammel N, Kandzia S, Zeiser J, Tranfield EM, Conradt HS, et al. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells. PLoS ONE. 2013;8:e78631. https://doi.org/10.1371/journal.pone.0078631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshioka Y, Konishi Y, Kosaka N, Katsuda T, Kato T, Ochiya T. Comparative marker analysis of extracellular vesicles in different human cancer types. J Extracell Vesicles. 2013. https://doi.org/10.3402/jev.v2i0.20424.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35. https://doi.org/10.1038/nature15756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Samsonov R, Shtam T, Burdakov V, Glotov A, Tsyrlina E, Berstein L, et al. Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: application for prostate cancer diagnostic. Prostate. 2016;76:68–79. https://doi.org/10.1002/pros.23101.

    Article  CAS  PubMed  Google Scholar 

  37. Urbanelli L, Magini A, Buratta S, Brozzi A, Sagini K, Polchi A, et al. Signaling pathways in exosomes biogenesis, secretion and fate. Genes. 2013;4:152–70. https://doi.org/10.3390/genes4020152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baaklini I, de Gonçalves C, Lukacs GL, Young JC. Selective binding of HSC70 and its co-chaperones to structural hotspots on CFTR. Sci Rep. 2020;10:4176. https://doi.org/10.1038/s41598-020-61107-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics. 2009;6:267–83. https://doi.org/10.1586/epr.09.17.

    Article  CAS  PubMed  Google Scholar 

  40. Lian Q, Xu J, Yan S, Huang M, Ding H, Sun X, et al. Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res. 2017;27:784–800. https://doi.org/10.1038/cr.2017.54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharma A, Johnson A. Exosome DNA: critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol. 2020. https://doi.org/10.1002/jcp.29153.

    Article  PubMed  Google Scholar 

  42. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, et al. ExoCarta: a web-based compendium of exosomal Cargo. J Mol Biol. 2016;428:688–92. https://doi.org/10.1016/j.jmb.2015.09.019.

    Article  CAS  PubMed  Google Scholar 

  43. Anand PK, Anand E, Bleck CKE, Anes E, Griffiths G. Exosomal Hsp70 induces a pro-inflammatory response to foreign particles including mycobacteria. PLoS ONE. 2010;5:e10136. https://doi.org/10.1371/journal.pone.0010136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Quek C, Hill AF. The role of extracellular vesicles in neurodegenerative diseases. Biochem Biophys Res Commun. 2017;483:1178–86. https://doi.org/10.1016/j.bbrc.2016.09.090.

    Article  CAS  PubMed  Google Scholar 

  45. Lim CZJ, Zhang Y, Chen Y, Zhao H, Stephenson MC, Ho NRY, et al. Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition. Nat Commun. 2019;10:1144. https://doi.org/10.1038/s41467-019-09030-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, et al. Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A. 2006;103:11172–7. https://doi.org/10.1073/pnas.0603838103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang Y, Xu F, Zhong J-Y, Lin X, Shan S-K, Guo B, et al. Exosomes as mediators of cell-to-cell communication in thyroid disease. Int J Endocrinol. 2020;2020:4378345. https://doi.org/10.1155/2020/4378345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu H, Chen L, Peng Y, Yu S, Liu J, Wu L, et al. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy. Oncotarget. 2018;9:2887–94. https://doi.org/10.18632/oncotarget.20812.

    Article  PubMed  Google Scholar 

  49. Zhou Y, Tian T, Zhu Y, Jaffar Ali D, Hu F, Qi Y, et al. Exosomes transfer among different species cells and mediating miRNAs delivery. J Cell Biochem. 2017;118:4267–74. https://doi.org/10.1002/jcb.26077.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang W, Zhou X, Yao Q, Liu Y, Zhang H, Dong Z. HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells. Am J Physiol Renal Physiol. 2017;313:F906–13. https://doi.org/10.1152/ajprenal.00178.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang J, De Veirman K, Faict S, Frassanito MA, Ribatti D, Vacca A, et al. Multiple myeloma exosomes establish a favourable bone marrow microenvironment with enhanced angiogenesis and immunosuppression. J Pathol. 2016;239:162–73. https://doi.org/10.1002/path.4712.

    Article  CAS  PubMed  Google Scholar 

  52. Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E, Ringnér M, et al. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A. 2013;110:7312–7. https://doi.org/10.1073/pnas.1220998110.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 2010;70:9621–30. https://doi.org/10.1158/0008-5472.CAN-10-1722.

    Article  CAS  PubMed  Google Scholar 

  54. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010;70:1668–78. https://doi.org/10.1158/0008-5472.CAN-09-2470.

    Article  CAS  PubMed  Google Scholar 

  55. Yang W-J, Yan J-B, Zhang L, Zhao F, Mei Z-M, Yang Y-N, et al. Paxillin promotes the migration and angiogenesis of HUVECs and affects angiogenesis in the mouse cornea. Exp Ther Med. 2020;20:901–9. https://doi.org/10.3892/etm.2020.8751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bryan BA, Dennstedt E, Mitchell DC, Walshe TE, Noma K, Loureiro R, et al. RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J. 2010;24:3186–95. https://doi.org/10.1096/fj.09-145102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weddell JC, Chen S, Imoukhuede PI. VEGFR1 promotes cell migration and proliferation through PLCγ and PI3K pathways. NPJ Syst Biol Appl. 2018;4:1. https://doi.org/10.1038/s41540-017-0037-9.

    Article  PubMed  Google Scholar 

  58. DeRita RM, Zerlanko B, Singh A, Lu H, Iozzo RV, Benovic JL, et al. c-Src, insulin-like growth factor I receptor, G-protein-coupled receptor kinases and focal adhesion kinase are enriched into prostate cancer cell exosomes. J Cell Biochem. 2017;118:66–73. https://doi.org/10.1002/jcb.25611.

    Article  CAS  PubMed  Google Scholar 

  59. Guo P, Hu B, Gu W, Xu L, Wang D, Huang H-JS, et al. Platelet-derived growth factor-B enhances glioma angiogenesis by stimulating vascular endothelial growth factor expression in tumor endothelia and by promoting pericyte recruitment. Am J Pathol. 2003;162:1083–93. https://doi.org/10.1016/S0002-9440(10)63905-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Webb AH, Gao BT, Goldsmith ZK, Irvine AS, Saleh N, Lee RP, et al. Inhibition of MMP-2 and MMP-9 decreases cellular migration and angiogenesis in in vitro models of retinoblastoma. BMC Cancer. 2017. https://doi.org/10.1186/s12885-017-3418-y.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sun B, Zhou Y, Fang Y, Li Z, Gu X, Xiang J. Colorectal cancer exosomes induce lymphatic network remodeling in lymph nodes. Int J Cancer. 2019;145:1648–59. https://doi.org/10.1002/ijc.32196.

    Article  CAS  PubMed  Google Scholar 

  62. Li R, Wang Y, Zhang X, Feng M, Ma J, Li J, et al. Exosome-mediated secretion of LOXL4 promotes hepatocellular carcinoma cell invasion and metastasis. Mol Cancer. 2019;18:18. https://doi.org/10.1186/s12943-019-0948-8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Somasundaram R, Herlyn M. Melanoma exosomes: messengers of metastasis. Nat Med. 2012. https://doi.org/10.1038/nm.2775.

    Article  PubMed  Google Scholar 

  64. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15. https://doi.org/10.1016/j.ccr.2014.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun. 2015;6:6716. https://doi.org/10.1038/ncomms7716.

    Article  CAS  PubMed  Google Scholar 

  66. McCready J, Sims JD, Chan D, Jay DG. Secretion of extracellular hsp90α via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer. 2010. https://doi.org/10.1186/1471-2407-10-294.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91. https://doi.org/10.1038/nm.2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hendrix A, Braems G, Bracke M, Seabra M, Gahl W, De Wever O, et al. The secretory small GTPase Rab27B as a marker for breast cancer progression. Oncotarget. 2010;1:304–8. https://doi.org/10.18632/oncotarget.100809.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 2013;5:1159–68. https://doi.org/10.1016/j.celrep.2013.10.050.

    Article  CAS  PubMed  Google Scholar 

  70. Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS. Tumor Cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol. 2017;27:595–607. https://doi.org/10.1016/j.tcb.2017.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF, Seabra MC, et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 2012;72:4920–30. https://doi.org/10.1158/0008-5472.CAN-12-0925.

    Article  CAS  PubMed  Google Scholar 

  72. Liu Y, Gu Y, Han Y, Zhang Q, Jiang Z, Zhang X, et al. Tumor Exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell. 2016;30:243–56. https://doi.org/10.1016/j.ccell.2016.06.021.

    Article  CAS  PubMed  Google Scholar 

  73. Zhang X, Shi H, Yuan X, Jiang P, Qian H, Xu W. Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer. 2018;17:146. https://doi.org/10.1186/s12943-018-0898-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang S, Su X, Xu M, Xiao X, Li X, Li H, et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway. Stem Cell Res Ther. 2019;10:117. https://doi.org/10.1186/s13287-019-1220-2.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Li Z, Wang Y, Zhu Y, Yuan C, Wang D, Zhang W, et al. The Hippo transducer TAZ promotes epithelial to mesenchymal transition and cancer stem cell maintenance in oral cancer. Mol Oncol. 2015. https://doi.org/10.1016/j.molonc.2015.01.007.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hu JL, Wang W, Lan XL, Zeng ZC, Liang YS, Yan YR, et al. CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer. 2019;18:91. https://doi.org/10.1186/s12943-019-1019-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, et al. Antagonism of miR-21 Reverses Epithelial-Mesenchymal Transition And Cancer Stem Cell Phenotype Through AKT/ERK1/2 inactivation by targeting PTEN. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0039520.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ying X, Wu Q, Wu X, Zhu Q, Wang X, Jiang L, et al. Epithelial ovarian cancer-secreted exosomal miR-222–3p induces polarization of tumor-associated macrophages. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.9246.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ding J, Xu Z, Zhang Y, Tan C, Hu W, Wang M, et al. Exosome-mediated miR-222 transferring: an insight into NF-κB-mediated breast cancer metastasis. Exp Cell Res. 2018. https://doi.org/10.1016/j.yexcr.2018.05.014.

    Article  PubMed  Google Scholar 

  80. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang W-C, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015. https://doi.org/10.1038/nature15376.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Lin R, Wang S, Zhao RC. Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem. 2013. https://doi.org/10.1007/s11010-013-1746-z.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sánchez CA, Andahur EI, Valenzuela R, Castellón EA, Fullá JA, Ramos CG, et al. Exosomes from bulk and stem cells from human prostate cancer have a differential microRNA content that contributes cooperatively over local and pre-metastatic niche. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.6540.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33. https://doi.org/10.1126/science.1160809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ward C, Meehan J, Gray ME, Murray AF, Argyle DJ, Kunkler IH, et al. The impact of tumour pH on cancer progression: strategies for clinical intervention. Explor Target Anti-tumor Ther. 2020;1:71–100. https://doi.org/10.37349/etat.2020.00005.

    Article  Google Scholar 

  85. Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood. 2007. https://doi.org/10.1182/blood-2006-07-035972.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Husain Z, Huang Y, Seth P, Sukhatme VP. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells. J Immunol. 2013. https://doi.org/10.4049/jimmunol.1202702.

    Article  PubMed  Google Scholar 

  87. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284:34211–22. https://doi.org/10.1074/jbc.M109.041152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife. 2016;5:e10250. https://doi.org/10.7554/eLife.10250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shu SL, Yang Y, Allen CL, Maguire O, Minderman H, Sen A, et al. Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Sci Rep. 2018;8:12905. https://doi.org/10.1038/s41598-018-31323-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shephard AP, Yeung V, Clayton A, Webber JP. Prostate cancer exosomes as modulators of the tumor microenvironment. J Cancer Metastas Treat. 2017. https://doi.org/10.20517/2394-4722.2017.32.

    Article  Google Scholar 

  91. Ronquist KG, Göran Ronquist K, Ek B, Morrell J, Stavreus-Evers A, Holst BS, et al. Prostasomes from four different species are able to produce extracellular adenosine triphosphate (ATP). Biochim Biophys Acta (BBA). 2013. https://doi.org/10.1016/j.bbagen.2013.05.019.

    Article  Google Scholar 

  92. Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol. 2011;187:676–83. https://doi.org/10.4049/jimmunol.1003884.

    Article  CAS  PubMed  Google Scholar 

  93. Escrevente C, Keller S, Altevogt P, Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer. 2011;11:108. https://doi.org/10.1186/1471-2407-11-108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Qian Y, Wang X, Li Y, Cao Y, Chen X. Abstract 33: NSCLC cells internalize ATPin vitroandin vivousing multiple endocytotic pathways. Mol Cell Biol Genet. 2016. https://doi.org/10.1158/1538-7445.am2016-33.

    Article  Google Scholar 

  95. Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17:395–417. https://doi.org/10.1038/s41571-020-0341-y.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Qu J-L, Qu X-J, Zhao M-F, Teng Y-E, Zhang Y, Hou K-Z, et al. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis. 2009;41:875–80. https://doi.org/10.1016/j.dld.2009.04.006.

    Article  CAS  PubMed  Google Scholar 

  97. Li C, Liu D-R, Li G-G, Wang H-H, Li X-W, Zhang W, et al. CD97 promotes gastric cancer cell proliferation and invasion through exosome-mediated MAPK signaling pathway. World J Gastroenterol. 2015;21:6215–28. https://doi.org/10.3748/wjg.v21.i20.6215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang L, Wu X-H, Wang D, Luo C-L, Chen L-X. Bladder cancer cell-derived exosomes inhibit tumor cell apoptosis and induce cell proliferation in vitro. Mol Med Rep. 2013;8:1272–8. https://doi.org/10.3892/mmr.2013.1634.

    Article  CAS  PubMed  Google Scholar 

  99. Huang J, Ding Z, Luo Q, Xu W. Cancer cell-derived exosomes promote cell proliferation and inhibit cell apoptosis of both normal lung fibroblasts and non-small cell lung cancer cell through delivering alpha-smooth muscle actin. Am J Transl Res. 2019;11:1711–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Dave B, Granados-Principal S, Zhu R, Benz S, Rabizadeh S, Soon-Shiong P, et al. Targeting RPL39 and MLF2 reduces tumor initiation and metastasis in breast cancer by inhibiting nitric oxide synthase signaling. Proc Natl Acad Sci U S A. 2014;111:8838–43. https://doi.org/10.1073/pnas.1320769111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. ExoCarta: Home - Exosome database. http://www.exocarta.org/ (2020). Accessed 18 Nov 2020

  102. Fernandes JV, Cobucci RNO, Jatobá CAN, de Fernandes TAA, de Azevedo JWV, de Araújo JMG. The role of the mediators of inflammation in cancer development. Pathol Oncol Res. 2015;21:527–34. https://doi.org/10.1007/s12253-015-9913-z.

    Article  CAS  PubMed  Google Scholar 

  103. Sharma P, Diergaarde B, Ferrone S, Kirkwood JM, Whiteside TL. Melanoma cell-derived exosomes in plasma of melanoma patients suppress functions of immune effector cells. Sci Rep. 2020;10:92. https://doi.org/10.1038/s41598-019-56542-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shen Y, Guo D, Weng L, Wang S, Ma Z, Yang Y, et al. Tumor-derived exosomes educate dendritic cells to promote tumor metastasis via HSP72/HSP105-TLR2/TLR4 pathway. Oncoimmunology. 2017;6:e1362527. https://doi.org/10.1080/2162402X.2017.1362527.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang X, Luo G, Zhang K, Cao J, Huang C, Jiang T, et al. Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kγ to promote pancreatic cancer metastasis. Cancer Res. 2018;78:4586–98. https://doi.org/10.1158/0008-5472.CAN-17-3841.

    Article  CAS  PubMed  Google Scholar 

  106. Blank C, Gajewski TF, Mackensen A. Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother. 2005;54:307–14. https://doi.org/10.1007/s00262-004-0593-x.

    Article  CAS  PubMed  Google Scholar 

  107. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6. https://doi.org/10.1038/s41586-018-0392-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Goldvaser H, Gutkin A, Beery E, Edel Y, Nordenberg J, Wolach O, et al. Characterisation of blood-derived exosomal hTERT mRNA secretion in cancer patients: a potential pan-cancer marker. Br J Cancer. 2017;117:353–7. https://doi.org/10.1038/bjc.2017.166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gutkin A, Uziel O, Beery E, Nordenberg J, Pinchasi M, Goldvaser H, et al. Tumor cells derived exosomes contain hTERT mRNA and transform nonmalignant fibroblasts into telomerase positive cells. Oncotarget. 2016;7:59173–88. https://doi.org/10.18632/oncotarget.10384.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Corcoran C, Rani S, O’Driscoll L. miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate. 2014. https://doi.org/10.1002/pros.22848.

    Article  PubMed  Google Scholar 

  111. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25:20. https://doi.org/10.1186/s12929-018-0426-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gradilla A-C, González E, Seijo I, Andrés G, Bischoff M, González-Mendez L, et al. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat Commun. 2014;5:5649. https://doi.org/10.1038/ncomms6649.

    Article  CAS  PubMed  Google Scholar 

  113. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151:1542–56. https://doi.org/10.1016/j.cell.2012.11.024.

    Article  CAS  PubMed  Google Scholar 

  114. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol. 2010;190:1079–91. https://doi.org/10.1083/jcb.201002049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Levchenko A, Mehta BM, Niu X, Kang G, Villafania L, Way D, et al. Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells. Proc Natl Acad Sci U S A. 2005;102:1933–8. https://doi.org/10.1073/pnas.0401851102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pasquier J, Galas L, Boulangé-Lecomte C, Rioult D, Bultelle F, Magal P, et al. Different modalities of intercellular membrane exchanges mediate cell-to-cell p-glycoprotein transfers in MCF-7 breast cancer cells. J Biol Chem. 2012;287:7374–87. https://doi.org/10.1074/jbc.M111.312157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Corcoran C, Rani S, O’Brien K, O’Neill A, Prencipe M, Sheikh R, et al. Docetaxel-resistance in prostate cancer: evaluating associated phenotypic changes and potential for resistance transfer via exosomes. PLoS ONE. 2012;7:e50999. https://doi.org/10.1371/journal.pone.0050999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol. 2012;227:658–67. https://doi.org/10.1002/jcp.22773.

    Article  CAS  PubMed  Google Scholar 

  119. Dutta S, Reamtong O, Panvongsa W, Kitdumrongthum S, Janpipatkul K, Sangvanich P, et al. Proteomics profiling of cholangiocarcinoma exosomes: a potential role of oncogenic protein transferring in cancer progression. Biochim Biophys Acta. 2015;1852:1989–99. https://doi.org/10.1016/j.bbadis.2015.06.024.

    Article  CAS  PubMed  Google Scholar 

  120. Chen W-X, Liu X-M, Lv M-M, Chen L, Zhao J-H, Zhong S-L, et al. Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE. 2014;9:e95240. https://doi.org/10.1371/journal.pone.0095240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhong S, Li W, Chen Z, Xu J, Zhao J. MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531:8–14. https://doi.org/10.1016/j.gene.2013.08.062.

    Article  CAS  PubMed  Google Scholar 

  122. Yu D-D, Wu Y, Zhang X-H, Lv M-M, Chen W-X, Chen X, et al. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222. Tumour Biol. 2016;37:3227–35. https://doi.org/10.1007/s13277-015-4161-0.

    Article  CAS  PubMed  Google Scholar 

  123. Haney MJ, Zhao Y, Jin YS, Li SM, Bago JR, Klyachko NL, et al. Macrophage-derived extracellular vesicles as drug delivery systems for triple negative breast cancer (TNBC) therapy. J Neuroimmune Pharmacol. 2020. https://doi.org/10.1007/s11481-019-09884-9.

    Article  PubMed  Google Scholar 

  124. Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Can Res. 2011. https://doi.org/10.1158/0008-5472.can-10-4455.

    Article  Google Scholar 

  125. Zhao C, Wang H, Xiong C, Liu Y. Hypoxic glioblastoma release exosomal VEGF-A induce the permeability of blood-brain barrier. Biochem Biophys Res Commun. 2018. https://doi.org/10.1016/j.bbrc.2018.05.140.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release. 2014. https://doi.org/10.1016/j.jconrel.2014.07.042.

    Article  PubMed  Google Scholar 

  127. Coccè V, Franzè S, Brini A, Giannì A, Pascucci L, Ciusani E, et al. In vitro anticancer activity of extracellular vesicles (EVs) secreted by gingival mesenchymal stromal cells primed with paclitaxel. Pharmaceutics. 2019. https://doi.org/10.3390/pharmaceutics11020061.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials. 2014;35:2383–90. https://doi.org/10.1016/j.biomaterials.2013.11.083.

    Article  CAS  PubMed  Google Scholar 

  129. Rivoltini L, Chiodoni C, Squarcina P, Tortoreto M, Villa A, Vergani B, et al. TNF-related apoptosis-inducing ligand (TRAIL)–armed exosomes deliver proapoptotic signals to tumor site. Clin Cancer Res. 2016. https://doi.org/10.1158/1078-0432.ccr-15-2170.

    Article  PubMed  Google Scholar 

  130. Wall N, Aspe R. Survivin-T34A: molecular mechanism and therapeutic potential. OncoTarget Ther. 2010. https://doi.org/10.2147/ott.s15293.

    Article  Google Scholar 

  131. Moroishi T, Hayashi T, Pan W-W, Fujita Y, Holt MV, Qin J, et al. The hippo pathway kinases LATS1/2 suppress cancer immunity. Cell. 2016;167:1525–39. https://doi.org/10.1016/j.cell.2016.11.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lou G, Song X, Yang F, Wu S, Wang J, Chen Z, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J Hematol Oncol. 2015;8:1–11. https://doi.org/10.1186/s13045-015-0220-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang H, Wang Y, Bai M, Wang J, Zhu K, Liu R, et al. Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci. 2018. https://doi.org/10.1111/cas.13488.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Shtam TA, Kovalev RA, Varfolomeeva EY, Makarov EM, Kil YV, Filatov MV. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal. 2013;11:1–10. https://doi.org/10.1186/1478-811X-11-88.

    Article  CAS  Google Scholar 

  135. Ohno S-I, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor MicroRNA to breast cancer cells. Mol Ther. 2013. https://doi.org/10.1038/mt.2012.180.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bu N, Li Q-L, Feng Q, Sun B-Z. Immune protection effect of exosomes against attack of L1210 tumor cells. Leuk Lymphoma. 2006;47:913–8. https://doi.org/10.1080/10428190500376191.

    Article  CAS  PubMed  Google Scholar 

  137. Lee E-Y, Park K-S, Yoon YJ, Lee J, Moon H-G, Jang SC, et al. Therapeutic effects of autologous tumor-derived nanovesicles on melanoma growth and metastasis. PLoS ONE. 2012;7:e33330. https://doi.org/10.1371/journal.pone.0033330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gehrmann U, Hiltbrunner S, Georgoudaki A-M, Karlsson MC, Näslund TI, Gabrielsson S. Synergistic induction of adaptive antitumor immunity by codelivery of antigen with α-galactosylceramide on exosomes. Cancer Res. 2013;73:3865–76. https://doi.org/10.1158/0008-5472.CAN-12-3918.

    Article  CAS  PubMed  Google Scholar 

  139. Xie Y, Bai O, Zhang H, Yuan J, Zong S, Chibbar R, et al. Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8 CTL- and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70. J Cell Mol Med. 2010. https://doi.org/10.1111/j.1582-4934.2009.00851.x.

    Article  PubMed  Google Scholar 

  140. Mahmoodzadeh Hosseini H, Imani Fooladi AA, Soleimanirad J, Nourani MR, Davaran S, Mahdavi M. Staphylococcal entorotoxin B anchored exosome induces apoptosis in negative esterogen receptor breast cancer cells. Tumour Biol. 2014;35:3699–707. https://doi.org/10.1007/s13277-013-1489-1.

    Article  CAS  PubMed  Google Scholar 

  141. Escudier B, Dorval T, Chaput N, André F, Caby M-P, Novault S, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3:10. https://doi.org/10.1186/1479-5876-3-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, et al. A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med. 2005;3:9. https://doi.org/10.1186/1479-5876-3-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology. 2016;5:e1071008. https://doi.org/10.1080/2162402X.2015.1071008.

    Article  CAS  PubMed  Google Scholar 

  144. Wong C-H, Chen Y-C. Clinical significance of exosomes as potential biomarkers in cancer. World J Clin Cases. 2019. https://doi.org/10.12998/wjcc.v7.i2.171.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wang J-C, Begin LR, Berube NG, Chevalier S, Aprikian AG, Gourdeau H, et al. Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res. 2007. https://doi.org/10.1158/1078-0432.ccr-06-1692.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Jang H-I, Lee H. A decrease in the expression of CD63 tetraspanin protein elevates invasive potential of human melanoma cells. Exp Mol Med. 2003;35:317–23. https://doi.org/10.1038/emm.2003.43.

    Article  CAS  PubMed  Google Scholar 

  147. Sandfeld-Paulsen B, Jakobsen KR, Bæk R, Folkersen BH, Rasmussen TR, Meldgaard P, et al. Exosomal proteins as diagnostic biomarkers in lung cancer. J Thorac Oncol. 2016. https://doi.org/10.1016/j.jtho.2016.05.034.

    Article  PubMed  Google Scholar 

  148. Jin H, Liu P, Wu Y, Meng X, Wu M, Han J, et al. Exosomal zinc transporter ZIP4 promotes cancer growth and is a novel diagnostic biomarker for pancreatic cancer. Cancer Sci. 2018;109:2946–56. https://doi.org/10.1111/cas.13737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kimura H, Yamamoto H, Harada T, Fumoto K, Osugi Y, Sada R, et al. CKAP4, a DKK1 receptor, is a biomarker in exosomes derived from pancreatic cancer and a molecular target for therapy. Clin Cancer Res. 2019;25:1936–47. https://doi.org/10.1158/1078-0432.CCR-18-2124.

    Article  CAS  PubMed  Google Scholar 

  150. San Lucas FA, Allenson K, Bernard V, Castillo J, Kim DU, Ellis K, et al. Minimally invasive genomic and transcriptomic profiling of visceral cancers by next-generation sequencing of circulating exosomes. Ann Oncol. 2016;27:635–41. https://doi.org/10.1093/annonc/mdv604.

    Article  CAS  PubMed  Google Scholar 

  151. Bernard V, Kim DU, San Lucas FA, Castillo J, Allenson K, Mulu FC, et al. Circulating nucleic acids are associated with outcomes of patients with pancreatic cancer. Gastroenterology. 2019;156(108–118):e4. https://doi.org/10.1053/j.gastro.2018.09.022.

    Article  CAS  Google Scholar 

  152. Pigati L, Yaddanapudi SCS, Iyengar R, Kim D-J, Hearn SA, Danforth D, et al. Selective release of MicroRNA species from normal and malignant mammary epithelial cells. PLoS ONE. 2010. https://doi.org/10.1371/journal.pone.0013515.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sohn W, Kim J, Kang SH, Yang SR, Cho J-Y, Cho HC, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med. 2015;47:e184. https://doi.org/10.1038/emm.2015.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yan S, Jiang Y, Liang C, Cheng M, Jin C, Duan Q, et al. Exosomal miR-6803-5p as potential diagnostic and prognostic marker in colorectal cancer. J Cell Biochem. 2018;119:4113–9. https://doi.org/10.1002/jcb.26609.

    Article  CAS  PubMed  Google Scholar 

  155. Feng Y, Zhong M, Zeng S, Wang L, Liu P, Xiao X, et al. Exosome-derived miRNAs as predictive biomarkers for diffuse large B-cell lymphoma chemotherapy resistance. Epigenomics. 2019;11:35–51. https://doi.org/10.2217/epi-2018-0123.

    Article  CAS  PubMed  Google Scholar 

  156. Pan D, Chen J, Feng C, Wu W, Wang Y, Tong J, et al. Preferential localization of MUC1 glycoprotein in exosomes secreted by non-small cell lung carcinoma cells. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20020323.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Skotland T, Ekroos K, Kauhanen D, Simolin H, Seierstad T, Berge V, et al. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur J Cancer. 2017;70:122–32. https://doi.org/10.1016/j.ejca.2016.10.011.

    Article  CAS  PubMed  Google Scholar 

  158. Re MD, Del Re M, Marconcini R, Pasquini G, Rofi E, Vivaldi C, et al. PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. Br J Cancer. 2018. https://doi.org/10.1038/bjc.2018.9.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220:727–37. https://doi.org/10.1016/j.jconrel.2015.09.031.

    Article  CAS  PubMed  Google Scholar 

  160. Melzer C, Rehn V, Yang Y, Bähre H, von der Ohe J, Hass R. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11060798.

    Article  PubMed Central  Google Scholar 

  161. Agrawal AK, Aqil F, Jeyabalan J, Spencer WA, Beck J, Gachuki BW, et al. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine. 2017;13:1627–36. https://doi.org/10.1016/j.nano.2017.03.001.

    Article  CAS  PubMed  Google Scholar 

  162. Kim MS, Haney MJ, Zhao Y, Yuan D, Deygen I, Klyachko NL, et al. Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine. 2018;14:195–204. https://doi.org/10.1016/j.nano.2017.09.011.

    Article  CAS  PubMed  Google Scholar 

  163. Gomari H, Forouzandeh Moghadam M, Soleimani M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. Onco Targets Ther. 2018;11:5753–62. https://doi.org/10.2147/OTT.S173110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Xie Y, Bai O, Zhang H, Yuan J, Zong S, Chibbar R, et al. Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8(+) CTL- and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70. J Cell Mol Med. 2010;14:2655–66. https://doi.org/10.1111/j.1582-4934.2009.00851.x.

    Article  CAS  PubMed  Google Scholar 

  165. Wang J-C, Bégin LR, Bérubé NG, Chevalier S, Aprikian AG, Gourdeau H, et al. Down-regulation of CD9 expression during prostate carcinoma progression is associated with CD9 mRNA modifications. Clin Cancer Res. 2007;13:2354–61. https://doi.org/10.1158/1078-0432.CCR-06-1692.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would also like to express their most sincere words of appreciation to Dr. Elham Jamshidi for her valuable contribution.

Funding

This study is related to project NO 1398/4083 From the Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran. We also appreciate the "Student Research Committee" and "Research & Technology Chancellor" at Shahid Beheshti University of Medical Sciences for their financial support of this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AJ, AB, NA, MRT and MA; investigation: AJ, AB, MA, NA; writing—original draft preparation: AJ, AB; writing—review and editing: AJ, AB, and MA; supervision: MRT. All authors read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Mostafa Rezaei-Tavirani.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Informed consent

The Authors grant the Publisher the sole and exclusive license of the full copyright in the Contribution, which licenses the Publisher hereby accepts. Consequently, the Publisher shall have the exclusive right to publish and sell the Contribution in all languages throughout the world.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, A., Babajani, A., Abdollahpour-Alitappeh, M. et al. Exosomes and cancer: from molecular mechanisms to clinical applications. Med Oncol 38, 45 (2021). https://doi.org/10.1007/s12032-021-01491-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-021-01491-0

Keywords

Navigation