Skip to main content
Log in

Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Studies indicate that inhibiting a single signaling pathway or one single product of a gene is insufficient for the prevention and treatment of cancer. This is due to the fact that dysregulation must occur in more than 500 genes in order to produce a cancerous phenotype. Despite this evidence, available drugs used for cancer treatment focus on a single target. Meanwhile, berberine as a nutraceutical is capable of targeting various processes involved in tumor development including proliferation, invasion, angiogenesis, and metastasis. In comparison with synthetic agents, berberine is cheaper, safer, and more available. Berberine has shown anti-inflammatory properties which make it an ideal option in order to prevent inflammation-associated cancers. Colorectal cancer is one of the most common cancers all over the world and its incidence is increasing each day. Therefore, further investigations about berberine could be helpful in the discovery of novel agents for preventing and/or treating colorectal cancer. This review emphasizes the studies investigating the roles of berberine in colorectal cancer such as controlling cell signaling pathways, inducing apoptosis, regulating microRNAs, attenuating oxidative stress, and affecting inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

miRNA:

MicroRNA

NF-κB:

Nuclear factor-κB

IBD:

Inflammatory bowel disease

IMCE:

Immorto-min colonic epithelial

AIF:

Apoptosis-inducing factor

ROS:

Reactive oxygen species

PARP:

Poly (ADP-ribose) polymerase

lncRNAs:

Long non-coding RNAs

CASC2:

Cancer susceptibility candidate 2

References

  1. Marmol I, Sanchez-de-Diego C, Pradilla Dieste A, Cerrada E, Rodriguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18(1):E197.

    Article  PubMed  CAS  Google Scholar 

  2. Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016;7:105–14.

    PubMed  PubMed Central  Google Scholar 

  3. Remo A, Fassan M, Vanoli A, Bonetti LR, Barresi V, Tatangelo F, et al. Morphology and molecular features of rare colorectal carcinoma histotypes. Cancers (Basel). 2019;11(7):1036.

    Article  CAS  PubMed Central  Google Scholar 

  4. Delavari A, Mardan F, Salimzadeh H, Bishehsari F, Khosravi P, Khanehzad M, et al. Characteristics of colorectal polyps and cancer; a retrospective review of colonoscopy data in iran. Middle East J Dig Dis. 2014;6:144–50.

    PubMed  PubMed Central  Google Scholar 

  5. van Neerven SM, Vermeulen L. The interplay between intrinsic and extrinsic Wnt signaling in controlling intestinal transformation. Differentiation. 2019;108:17–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal Cancer: Epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer. 2016;15:195–203.

    Article  PubMed  Google Scholar 

  7. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res. 2008;25:2097–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee J, Shin A, Oh JH, Kim J. Colors of vegetables and fruits and the risks of colorectal cancer. World J Gastroenterol. 2017;23:2527–38.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abnet CC, Corley DA, Freedman ND, Kamangar F. Diet and upper gastrointestinal malignancies. Gastroenterology. 2015;148:1234–43.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhang FF, Cudhea F, Shan Z, Michaud DS, Imamura F, Eom H, et al. Preventable cancer burden associated with poor diet in the United States. JNCI Cancer Spectr. 2019;3:pkz034.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cranganu A, Camporeale J. Nutrition aspects of lung cancer. Nutr Clin Pract. 2009;24:688–700.

    Article  PubMed  Google Scholar 

  12. Bougnoux P, Hajjaji N, Maheo K, Couet C, Chevalier S. Fatty acids and breast cancer: sensitization to treatments and prevention of metastatic re-growth. Prog Lipid Res. 2010;49:76–86.

    Article  CAS  PubMed  Google Scholar 

  13. Syed DN, Suh Y, Afaq F, Mukhtar H. Dietary agents for chemoprevention of prostate cancer. Cancer Lett. 2008;265:167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal. 2008;10:475–510.

    Article  CAS  PubMed  Google Scholar 

  15. Bjelakovic G, Nikolova D, Simonetti RG, Gluud C. Antioxidant supplements for preventing gastrointestinal cancers. Cochrane Database Syst Rev. 2008;2008:CD004183.

    Google Scholar 

  16. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB. Curcumin and cancer: an "old-age" disease with an "age-old" solution. Cancer Lett. 2008;267:133–64.

    Article  CAS  PubMed  Google Scholar 

  17. Aronson JK. Defining 'nutraceuticals': neither nutritious nor pharmaceutical. Br J Clin Pharmacol. 2017;83:8–19.

    Article  PubMed  Google Scholar 

  18. Gupta S, Sharma A, Mishra S, Awasthee N. Nutraceuticals for the prevention and cure of cancer. Cham: Springer; 2019. p. 603–610.

    Google Scholar 

  19. Gupta SC, Kim JH, Prasad S, Aggarwal BB. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010;29:405–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aggarwal BB, Van Kuiken ME, Iyer LH, Harikumar KB, Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med (Maywood). 2009;234:825–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet. 2014;383:1490–502.

    Article  PubMed  Google Scholar 

  22. White A, Ironmonger L, Steele RJC, Ormiston-Smith N, Crawford C, Seims A. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer. 2018;18:906.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 2012;10:639–45.

    Article  PubMed  Google Scholar 

  24. Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y, et al. Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS ONE. 2013;8:e53916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang Y, Ben Q, Shen H, Lu W, Zhang Y, Zhu J. Diabetes mellitus and incidence and mortality of colorectal cancer: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol. 2011;26:863–76.

    Article  PubMed  Google Scholar 

  26. Liang PS, Chen TY, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int J Cancer. 2009;124:2406–15.

    Article  CAS  PubMed  Google Scholar 

  27. Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Ann Oncol. 2011;22:1958–72.

    Article  CAS  PubMed  Google Scholar 

  28. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE. 2011;6:e20456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Taylor DP, Burt RW, Williams MS, Haug PJ, Cannon-Albright LA. Population-based family history-specific risks for colorectal cancer: a constellation approach. Gastroenterology. 2010;138:877–85.

    Article  PubMed  Google Scholar 

  30. Sonnenberg A, Genta RM. Helicobacter pylori is a risk factor for colonic neoplasms. Am J Gastroenterol. 2013;108:208–15.

    Article  PubMed  Google Scholar 

  31. Lin KJ, Cheung WY, Lai JY, Giovannucci EL. The effect of estrogen vs. combined estrogen-progestogen therapy on the risk of colorectal cancer. Int J Cancer. 2012;130:419–30.

    Article  CAS  PubMed  Google Scholar 

  32. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.

    Article  CAS  PubMed  Google Scholar 

  33. Boyle T, Keegel T, Bull F, Heyworth J, Fritschi L. Physical activity and risks of proximal and distal colon cancers: a systematic review and meta-analysis. J Natl Cancer Inst. 2012;104:1548–61.

    Article  PubMed  Google Scholar 

  34. Brenner H, Chang-Claude J, Seiler CM, Rickert A, Hoffmeister M. Protection from colorectal cancer after colonoscopy: a population-based, case-control study. Ann Intern Med. 2011;154:22–30.

    Article  PubMed  Google Scholar 

  35. Elmunzer BJ, Hayward RA, Schoenfeld PS, Saini SD, Deshpande A, Waljee AK. Effect of flexible sigmoidoscopy-based screening on incidence and mortality of colorectal cancer: a systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2012;9:e1001352.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu S, Feng B, Li K, Zhu X, Liang S, Liu X, et al. Fish consumption and colorectal cancer risk in humans: a systematic review and meta-analysis. Am J Med. 2012. https://doi.org/10.1016/j.amjmed.2012.01.022.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Aune D, Lau R, Chan DS, Vieira R, Greenwood DC, Kampman E, et al. Dairy products and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol. 2012;23:37–45.

    Article  CAS  PubMed  Google Scholar 

  38. Aune D, Chan DS, Lau R, Vieira R, Greenwood DC, Kampman E, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Aune D, Lau R, Chan DS, Vieira R, Greenwood DC, Kampman E, et al. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology. 2011;141:106–18.

    Article  PubMed  Google Scholar 

  40. Cicero AF, Baggioni A. Berberine and its role in chronic disease. Adv Exp Med Biol. 2016;928:27–45.

    Article  CAS  PubMed  Google Scholar 

  41. Wang K, Feng X, Chai L, Cao S, Qiu F. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev. 2017;49:139–57.

    Article  PubMed  CAS  Google Scholar 

  42. Li Z, Geng YN, Jiang JD, Kong WJ. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid Based Complement Alternat Med. 2014;2014:289264.

    PubMed  PubMed Central  Google Scholar 

  43. Feng X, Sureda A, Jafari S, Memariani Z, Tewari D, Annunziata G, et al. Berberine in cardiovascular and metabolic diseases: from mechanisms to therapeutics. Theranostics. 2019;9:1923–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuan NN, Cai CZ, Wu MY, Su HX, Li M, Lu JH. Neuroprotective effects of berberine in animal models of Alzheimer's disease: a systematic review of pre-clinical studies. BMC Complement Altern Med. 2019;19:109.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–6.

    Article  CAS  PubMed  Google Scholar 

  46. Tait SW, Green DR. Caspase-independent cell death: leaving the set without the final cut. Oncogene. 2008;27:6452–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 2001;410:549–54.

    Article  CAS  PubMed  Google Scholar 

  48. Hsu WH, Hsieh YS, Kuo HC, Teng CY, Huang HI, Wang CJ, et al. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch Toxicol. 2007;81:719–28.

    Article  CAS  PubMed  Google Scholar 

  49. Li W, Hua B, Saud SM, Lin H, Hou W, Matter MS, et al. Berberine regulates AMP-activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice. Mol Carcinog. 2015;54:1096–109.

    Article  CAS  PubMed  Google Scholar 

  50. Dai W, Mu L, Cui Y, Li Y, Chen P, Xie H, et al. Berberine promotes apoptosis of colorectal cancer via regulation of the long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2)/AU-binding factor 1 (AUF1)/B-cell CLL/lymphoma 2 (Bcl-2) axis. Med Sci Monit. 2019;25:730–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang L, Liu L, Shi Y, Cao H, Chaturvedi R, Calcutt MW, et al. Berberine induces caspase-independent cell death in colon tumor cells through activation of apoptosis-inducing factor. PLoS ONE. 2012;7:e36418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mehrgou A, Akouchekian M. Therapeutic impacts of microRNAs in breast cancer by their roles in regulating processes involved in this disease. J Res Med Sci. 2017;22:130.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Pardini B, De Maria D, Francavilla A, Di Gaetano C, Ronco G, Naccarati A. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer. 2018;18:696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  55. Feng M, Luo X, Gu C, Li Y, Zhu X, Fei J. Systematic analysis of berberine-induced signaling pathway between miRNA clusters and mRNAs and identification of mir-99a approximately 125b cluster function by seed-targeting inhibitors in multiple myeloma cells. RNA Biol. 2015;12:82–91.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen Q, Qin R, Fang Y, Li H. Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell Physiol Biochem. 2015;36:956–65.

    Article  CAS  PubMed  Google Scholar 

  57. Wang Y, Zhang S. Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2. Biomed Pharmacother. 2018;103:1287–93.

    Article  CAS  PubMed  Google Scholar 

  58. Liu H, Huang C, Wu L, Wen B. Effect of evodiamine and berberine on miR-429 as an oncogene in human colorectal cancer. Onco Targets Ther. 2016;9:4121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yousefi B, Samadi N, Ahmadi Y. Akt and p53R2, partners that dictate the progression and invasiveness of cancer. DNA Repair. 2014;22:24–9.

    Article  CAS  PubMed  Google Scholar 

  60. Sun Y, Shen S, Liu X, Tang H, Wang Z, Yu Z, et al. MiR-429 inhibits cells growth and invasion and regulates EMT-related marker genes by targeting Onecut2 in colorectal carcinoma. Mol Cell Biochem. 2014;390:19–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huang C, Liu H, Gong XL, Wu LY, Wen B. Effect of evodiamine and berberine on the interaction between DNMTs and target microRNAs during malignant transformation of the colon by TGF-beta1. Oncol Rep. 2017;37:1637–45.

    Article  CAS  PubMed  Google Scholar 

  62. Vaira V, Faversani A, Dohi T, Montorsi M, Augello C, Gatti S, et al. miR-296 regulation of a cell polarity-cell plasticity module controls tumor progression. Oncogene. 2012;31:27–38.

    Article  CAS  PubMed  Google Scholar 

  63. Su YH, Tang WC, Cheng YW, Sia P, Huang CC, Lee YC, et al. Targeting of multiple oncogenic signaling pathways by Hsp90 inhibitor alone or in combination with berberine for treatment of colorectal cancer. Biochim Biophys Acta. 2015;1853:2261–72.

    Article  CAS  PubMed  Google Scholar 

  64. Huang G, Wu X, Li S, Xu X, Zhu H, Chen X. The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer. Sci Rep. 2016;6:26524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Saha SK, Khuda-Bukhsh AR. Berberine alters epigenetic modifications, disrupts microtubule network, and modulates HPV-18 E6–E7 oncoproteins by targeting p53 in cervical cancer cell HeLa: a mechanistic study including molecular docking. Eur J Pharmacol. 2014;744:132–46.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang J, Cao H, Zhang B, Cao H, Xu X, Ruan H, et al. Berberine potently attenuates intestinal polyps growth in ApcMin mice and familial adenomatous polyposis patients through inhibition of Wnt signalling. J Cell Mol Med. 2013;17:1484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Casimiro MC, Velasco-Velazquez M, Aguirre-Alvarado C, Pestell RG. Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: past and present. Expert Opin Investig Drugs. 2014;23:295–304.

    Article  CAS  PubMed  Google Scholar 

  68. Beildeck ME, Gelmann EP, Byers SW. Cross-regulation of signaling pathways: an example of nuclear hormone receptors and the canonical Wnt pathway. Exp Cell Res. 2010;316:1763–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dawson MI, Zhang XK. Discovery and design of retinoic acid receptor and retinoid X receptor class- and subtype-selective synthetic analogs of all-trans-retinoic acid and 9-cis-retinoic acid. Curr Med Chem. 2002;9:623–37.

    Article  CAS  PubMed  Google Scholar 

  70. Yousefi B, Samadi N, Baradaran B, Shafiei-Irannejad V, Zarghami N. Peroxisome proliferator-activated receptor ligands and their role in chronic myeloid leukemia: therapeutic strategies. Chem Biol Drug Des. 2016;88:17–25.

    Article  CAS  PubMed  Google Scholar 

  71. Ruan H, Zhan YY, Hou J, Xu B, Chen B, Tian Y, et al. Berberine binds RXRalpha to suppress beta-catenin signaling in colon cancer cells. Oncogene. 2017;36:6906–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jacobs ET, Martinez ME, Campbell PT, Conti DV, Duggan D, Figueiredo JC, et al. Genetic variation in the retinoid X receptor and calcium-sensing receptor and risk of colorectal cancer in the Colon Cancer Family Registry. Carcinogenesis. 2010;31:1412–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Egan JB, Thompson PA, Ashbeck EL, Conti DV, Duggan D, Hibler E, et al. Genetic polymorphisms in vitamin D receptor VDR/RXRA influence the likelihood of colon adenoma recurrence. Cancer Res. 2010;70:1496–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yamazaki K, Shimizu M, Okuno M, Matsushima-Nishiwaki R, Kanemura N, Araki H, et al. Synergistic effects of RXR alpha and PPAR gamma ligands to inhibit growth in human colon cancer cells–phosphorylated RXR alpha is a critical target for colon cancer management. Gut. 2007;56:1557–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Duvic M, Hymes K, Heald P, Breneman D, Martin AG, Myskowski P, et al. Bexarotene is effective and safe for treatment of refractory advanced-stage cutaneous T-cell lymphoma: multinational phase II-III trial results. J Clin Oncol. 2001;19:2456–71.

    Article  CAS  PubMed  Google Scholar 

  76. Guldenschuh I, Hurlimann R, Muller A, Ammann R, Mullhaupt B, Dobbie Z, et al. Relationship between APC genotype, polyp distribution, and oral sulindac treatment in the colon and rectum of patients with familial adenomatous polyposis. Dis Colon Rectum. 2001;44:1090–7.

    Article  CAS  PubMed  Google Scholar 

  77. Kolluri SK, Corr M, James SY, Bernasconi M, Lu D, Liu W, et al. The R-enantiomer of the nonsteroidal antiinflammatory drug etodolac binds retinoid X receptor and induces tumor-selective apoptosis. Proc Natl Acad Sci USA. 2005;102:2525–30.

    Article  CAS  PubMed  Google Scholar 

  78. Todoric J, Antonucci L, Karin M. Targeting inflammation in cancer prevention and therapy. Cancer Prev Res (Phila). 2016;9:895–905.

    Article  CAS  Google Scholar 

  79. Eiro N, Vizoso FJ. Inflammation and cancer. World J Gastrointest Surg. 2012;4:62–72.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Watanabe T, Konishi T, Kishimoto J, Kotake K, Muto T, Sugihara K, et al. Ulcerative colitis-associated colorectal cancer shows a poorer survival than sporadic colorectal cancer: a nationwide Japanese study. Inflamm Bowel Dis. 2011;17:802–8.

    Article  PubMed  Google Scholar 

  81. Zhen Y, Luo C, Zhang H. Early detection of ulcerative colitis-associated colorectal cancer. Gastroenterol Rep (Oxf). 2018;6:83–92.

    Article  Google Scholar 

  82. Chen J, Pitmon E, Wang K. Microbiome, inflammation and colorectal cancer. Semin Immunol. 2017;32:43–53.

    Article  CAS  PubMed  Google Scholar 

  83. Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, et al. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Investig. 2008;118:2516–25.

    CAS  PubMed  Google Scholar 

  84. Francescone R, Hou V, Grivennikov SI. Cytokines, IBD, and colitis-associated cancer. Inflamm Bowel Dis. 2015;21:409–18.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lucas C, Barnich N, Nguyen HTT. Microbiota, inflammation and colorectal cancer. Int J Mol Sci. 2017;18(6):1310.

    Article  PubMed Central  CAS  Google Scholar 

  86. Tai WP. Luo HS [The inhibit effect of berberine on human colon cell line cyclooxygenase-2]. Zhonghua Nei Ke Za Zhi. 2003;42:558–60.

    CAS  PubMed  Google Scholar 

  87. Liu X, Ji Q, Ye N, Sui H, Zhou L, Zhu H, et al. Berberine inhibits invasion and metastasis of colorectal cancer cells via COX-2/PGE2 mediated JAK2/STAT3 signaling pathway. PLoS ONE. 2015;10:e0123478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Li D, Zhang Y, Liu K, Zhao Y, Xu B, Xu L, et al. Berberine inhibits colitis-associated tumorigenesis via suppressing inflammatory responses and the consequent EGFR signaling-involved tumor cell growth. Lab Investig. 2017;97:1343–53.

    Article  CAS  PubMed  Google Scholar 

  89. Zhu L, Gu P, Shen H. Protective effects of berberine hydrochloride on DSS-induced ulcerative colitis in rats. Int Immunopharmacol. 2019;68:242–51.

    Article  CAS  PubMed  Google Scholar 

  90. Carini F, Mazzola M, Rappa F, Jurjus A, Geagea AG, Al Kattar S, et al. Colorectal carcinogenesis: role of oxidative stress and antioxidants. Anticancer Res. 2017;37:4759–66.

    CAS  PubMed  Google Scholar 

  91. Gothai S, Muniandy K, Gnanaraj C, Ibrahim IAA, Shahzad N, Al-Ghamdi SS, et al. Pharmacological insights into antioxidants against colorectal cancer: a detailed review of the possible mechanisms. Biomed Pharmacother. 2018;107:1514–22.

    Article  CAS  PubMed  Google Scholar 

  92. Ke F, Yadav PK, Ju LZ. Herbal medicine in the treatment of ulcerative colitis. Saudi J Gastroenterol. 2012;18:3–10.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cui L, Feng L, Zhang ZH, Jia XB. The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-kappaB pathway activation. Int Immunopharmacol. 2014;23:294–303.

    Article  CAS  PubMed  Google Scholar 

  94. Lee IA, Hyun YJ, Kim DH. Berberine ameliorates TNBS-induced colitis by inhibiting lipid peroxidation, enterobacterial growth and NF-kappaB activation. Eur J Pharmacol. 2010;648:162–70.

    Article  CAS  PubMed  Google Scholar 

  95. Yan F, Wang L, Shi Y, Cao H, Liu L, Washington MK, et al. Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G504–G514514.

    Article  CAS  PubMed  Google Scholar 

  96. Li R, Chen Y, Shi M, Xu X, Zhao Y, Wu X, et al. Gegen Qinlian decoction alleviates experimental colitis via suppressing TLR4/NF-kappaB signaling and enhancing antioxidant effect. Phytomedicine. 2016;23:1012–20.

    Article  PubMed  Google Scholar 

  97. Zhang LC, Wang Y, Tong LC, Sun S, Liu WY, Zhang S, et al. Berberine alleviates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Exp Ther Med. 2017;13:3374–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giordano CR, Roberts R, Krentz KA, Bissig D, Talreja D, Kumar A, et al. Catalase therapy corrects oxidative stress-induced pathophysiology in incipient diabetic retinopathy. Investig Ophthalmol Vis Sci. 2015;56:3095–102.

    Article  CAS  Google Scholar 

  99. Park YS, Uddin MJ, Piao L, Hwang I, Lee JH, Ha H. Novel role of endogenous catalase in macrophage polarization in adipose tissue. Mediators Inflamm. 2016;2016:8675905.

    PubMed  PubMed Central  Google Scholar 

  100. Younus H. Therapeutic potentials of superoxide dismutase. Int J Health Sci (Qassim). 2018;12:88–93.

    CAS  Google Scholar 

  101. Ndrepepa G. Myeloperoxidase—A bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta. 2019;493:36–51.

    Article  CAS  PubMed  Google Scholar 

  102. Nguyen NH, Tran GB, Nguyen CT. Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases. J Mol Med (Berl). 2020;98:59–69.

    Article  CAS  Google Scholar 

  103. Piechota-Polanczyk A, Fichna J. Review article: the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:605–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bourgeais J, Gouilleux-Gruart V, Gouilleux F. Oxidative metabolism in cancer: a STAT affair? JAKSTAT. 2013;2:e25764.

    PubMed  PubMed Central  Google Scholar 

  105. Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci. 2009;1171:59–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Guaman Ortiz LM, Tillhon M, Parks M, Dutto I, Prosperi E, Savio M, et al. Multiple effects of berberine derivatives on colon cancer cells. Biomed Res Int. 2014;2014:924585.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Wu K, Yang Q, Mu Y, Zhou L, Liu Y, Zhou Q, et al. Berberine inhibits the proliferation of colon cancer cells by inactivating Wnt/beta-catenin signaling. Int J Oncol. 2012;41:292–8.

    Article  CAS  PubMed  Google Scholar 

  108. Yu M, Tong X, Qi B, Qu H, Dong S, Yu B, et al. Berberine enhances chemosensitivity to irinotecan in colon cancer via inhibition of NFkappaB. Mol Med Rep. 2014;9:249–54.

    Article  CAS  PubMed  Google Scholar 

  109. Chidambara Murthy KN, Jayaprakasha GK, Patil BS. The natural alkaloid berberine targets multiple pathways to induce cell death in cultured human colon cancer cells. Eur J Pharmacol. 2012;688:14–211.

    Article  CAS  PubMed  Google Scholar 

  110. Piyanuch R, Sukhthankar M, Wandee G, Baek SJ. Berberine, a natural isoquinoline alkaloid, induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett. 2007;258:230–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu LN, Lu BN, Hu MM, Xu YW, Han X, Qi Y, et al. Mechanisms involved in the cytotoxic effects of berberine on human colon cancer HCT-8 cells. Biocell. 2012;36:113–20.

    CAS  PubMed  Google Scholar 

  112. Ghareeb AE, Moawed FSM, Ghareeb DA, Kandil EI. Potential prophylactic effect of berberine against rat colon carcinoma induce by 1,2-dimethyl hydrazine. Asian Pac J Cancer Prev. 2018;19:1685–90.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

JH and PMD contributed in conception, design, and drafting of the manuscript. MM, ZA, MAM, MS, and BY contributed in data collection and manuscript drafting. All authors approved the final version for submission. BY oversaw the study.

Corresponding author

Correspondence to Bahman Yousefi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallajzadeh, J., Maleki Dana, P., Mobini, M. et al. Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med Oncol 37, 49 (2020). https://doi.org/10.1007/s12032-020-01367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-020-01367-9

Keywords

Navigation