Skip to main content

Advertisement

Log in

Bacteriophages and medical oncology: targeted gene therapy of cancer

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dabrowska K, Switala-Jelen K, Opolski A, Weber-Dabrowska B, Gorski A. Bacteriophage penetration in vertebrates. J Appl Microbiol. 2005;98(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  2. Viertel TM, Ritter K, Horz HP. Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother. 2014;. doi:10.1093/jac/dku173.

    PubMed  Google Scholar 

  3. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228(4705):1315–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kulseth MA, Fagerlund A, Myrset AH. Affinity selection using filamentous phage display. Methods Mol Biol. 2014;1088:67–80.

    Article  PubMed  Google Scholar 

  5. Kehoe JW, Kay BK. Filamentous phage display in the new millennium. Chem Rev. 2005;105(11):4056–72.

    Article  CAS  PubMed  Google Scholar 

  6. Ebrahimizadeh W, Rajabibazl M. Bacteriophage vehicles for phage display: biology, mechanism, and application. Curr Microbiol. 2014;69(2):109–20.

    Article  CAS  PubMed  Google Scholar 

  7. Willats WG. Phage display: practicalities and prospects. Plant Mol Biol. 2002;50(6):837–54.

    Article  CAS  PubMed  Google Scholar 

  8. Newton J, Deutscher SL. Phage peptide display. Hand Exp Pharmacol. 2008;185(Pt 2):145–63.

    Article  CAS  Google Scholar 

  9. Scott JK, Smith GP. Searching for peptide ligands with an epitope library. Science. 1990;249(4967):386–90.

    Article  CAS  PubMed  Google Scholar 

  10. Deutscher SL. Phage display in molecular imaging and diagnosis of cancer. Chem Rev. 2010;110(5):3196–211.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Georgieva Y, Konthur Z. Design and screening of M13 phage display cDNA libraries. Molecules. 2011;16(2):1667–81.

    Article  CAS  PubMed  Google Scholar 

  12. Pershad K, Kay BK. Generating thermal stable variants of protein domains through phage display. Methods. 2013;60(1):38–45.

    Article  CAS  PubMed  Google Scholar 

  13. Hammers CM, Stanley JR. Antibody phage display: technique and applications. J Invest Dermatol. 2014;134(2):e17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Pande J, Szewczyk MM, Grover AK. Phage display: concept, innovations, applications and future. Biotechnol Adv. 2010;28(6):849–58.

    Article  CAS  PubMed  Google Scholar 

  15. Ladner RC, Sato AK, Gorzelany J, de Souza M. Phage display-derived peptides as therapeutic alternatives to antibodies. Drug Discov Today. 2004;9(12):525–9.

    Article  CAS  PubMed  Google Scholar 

  16. Paschke M. Phage display systems and their applications. Appl Microbiol Biotechnol. 2006;70(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  17. Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S. Phage display as a technology delivering on the promise of peptide drug discovery. Drug Discov Today. 2013;18(23–24):1144–57.

    Article  CAS  PubMed  Google Scholar 

  18. Huang JX, Bishop-Hurley SL, Cooper MA. Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrob Agents Chemother. 2012;56(9):4569–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Smothers JF, Henikoff S, Carter P. Tech. Sight. Phage display. Affinity selection from biological libraries. Science. 2002;298(5593):621–2.

    Article  CAS  PubMed  Google Scholar 

  20. Rangel R, Guzman-Rojas L, le Roux LG, Staquicini FI, Hosoya H, Barbu EM, et al. Combinatorial targeting and discovery of ligand-receptors in organelles of mammalian cells. Nat Commun. 2012;3:788.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Sun N, Funke SA, Willbold D. Mirror image phage display—generating stable therapeutically and diagnostically active peptides with biotechnological means. J Biotechnol. 2012;161(2):121–5.

    Article  CAS  PubMed  Google Scholar 

  22. Laakkonen P, Vuorinen K. Homing peptides as targeted delivery vehicles. Integr Biol (Camb). 2010;2(7–8):326–37.

    Article  CAS  Google Scholar 

  23. Gao H, Xiong Y, Zhang S, Yang Z, Cao S, Jiang X. RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol Pharm. 2014. doi:10.1021/mp400751g.

  24. Sugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Girard OM, et al. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell. 2009;16(6):510–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ruoslahti E, Bhatia SN, Sailor MJ. Targeting of drugs and nanoparticles to tumors. J Cell Biol. 2010;188(6):759–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Jain NK, Mishra V, Mehra NK. Targeted drug delivery to macrophages. Expert Opin Drug Deliv. 2013;10(3):353–67.

    Article  CAS  PubMed  Google Scholar 

  28. Gray BP, Brown KC. Combinatorial peptide libraries: mining for cell-binding peptides. Chem Rev. 2014;114(2):1020–81.

    Article  CAS  PubMed  Google Scholar 

  29. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–80.

    Article  CAS  PubMed  Google Scholar 

  30. Kolonin M, Pasqualini R, Arap W. Molecular addresses in blood vessels as targets for therapy. Curr Opin Chem Biol. 2001;5(3):308–13.

    Article  CAS  PubMed  Google Scholar 

  31. Ruoslahti E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv Mater. 2012;24(28):3747–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Aina OH, Liu R, Sutcliffe JL, Marik J, Pan CX, Lam KS. From combinatorial chemistry to cancer-targeting peptides. Mol Pharm. 2007;4(5):631–51.

    Article  CAS  PubMed  Google Scholar 

  33. Matsuo AL, Juliano MA, Figueiredo CR, Batista WL, Tanaka AS, Travassos LR. A new phage-display tumor-homing peptide fused to antiangiogenic peptide generates a novel bioactive molecule with antimelanoma activity. Mol Cancer Res. 2011;9(11):1471–8.

    Article  CAS  PubMed  Google Scholar 

  34. Jager S, Jahnke A, Wilmes T, Adebahr S, Vogtle FN, Delima-Hahn E, et al. Leukemia-targeting ligands isolated from phage-display peptide libraries. Leukemia. 2007;21(3):411–20.

    Article  CAS  PubMed  Google Scholar 

  35. Shires K, Shankland I, Mowla S, Njikan S, Jaymacker J, Novitzky N. Serine and proline-rich ligands enriched via phage-display technology show preferential binding to BCR/ABL expressing cells. Hematol Oncol Stem Cell Ther. 2014;7(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  36. Schluesener HJ, Xianglin T. Selection of recombinant phages binding to pathological endothelial and tumor cells of rat glioblastoma by in vivo display. J Neurol Sci. 2004;224(1–2):77–82.

    Article  CAS  PubMed  Google Scholar 

  37. Bockmann M, Drosten M, Putzer BM. Discovery of targeting peptides for selective therapy of medullary thyroid carcinoma. J Gene Med. 2005;7(2):179–88.

    Article  PubMed  Google Scholar 

  38. Jayanna PK, Bedi D, Deinnocentes P, Bird RC, Petrenko VA. Landscape phage ligands for PC3 prostate carcinoma cells. Protein Eng Des Sel. 2010;23(6):423–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279(5349):377–80.

    Article  CAS  PubMed  Google Scholar 

  40. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5(9):1032–8.

    Article  CAS  PubMed  Google Scholar 

  41. Hajitou A, Trepel M, Lilley CE, Soghomonyan S, Alauddin MM, Marini FC 3rd, et al. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell. 2006;125(2):385–98.

    Article  CAS  PubMed  Google Scholar 

  42. Curnis F, Sacchi A, Borgna L, Magni F, Gasparri A, Corti A. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol. 2000;18(11):1185–90.

    Article  CAS  PubMed  Google Scholar 

  43. Wang W, Li W, Ma N, Steinhoff G. Non-viral gene delivery methods. Curr Pharm Biotechnol. 2013;14(1):46–60.

    CAS  PubMed  Google Scholar 

  44. Rogers ML, Rush RA. Non-viral gene therapy for neurological diseases, with an emphasis on targeted gene delivery. J Control Release. 2012;157(2):183–9.

    Article  CAS  PubMed  Google Scholar 

  45. Ishiura M, Hirose S, Uchida T, Hamada Y, Suzuki Y, Okada Y. Phage particle-mediated gene transfer to cultured mammalian cells. Mol Cell Biol. 1982;2(6):607–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Okayama H, Berg P. Bacteriophage lambda vector for transducing a cDNA clone library into mammalian cells. Mol Cell Biol. 1985;5(5):1136–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Yokoyama-Kobayashi M, Kato S. Recombinant f1 phage particles can transfect monkey COS-7 cells by DEAE dextran method. Biochem Biophys Res Commun. 1993;192(2):935–9.

    Article  CAS  PubMed  Google Scholar 

  48. Yokoyama-Kobayashi M, Kato S. Recombinant f1 phage-mediated transfection of mammalian cells using lipopolyamine technique. Anal Biochem. 1994;223(1):130–4.

    Article  CAS  PubMed  Google Scholar 

  49. Clark JR, March JB. Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol. 2006;24(5):212–8.

    Article  CAS  PubMed  Google Scholar 

  50. Larocca D, Witte A, Johnson W, Pierce GF, Baird A. Targeting bacteriophage to mammalian cell surface receptors for gene delivery. Hum Gene Ther. 1998;9(16):2393–9.

    Article  CAS  PubMed  Google Scholar 

  51. Larocca D, Kassner PD, Witte A, Ladner RC, Pierce GF, Baird A. Gene transfer to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J. 1999;13(6):727–34.

    CAS  PubMed  Google Scholar 

  52. Bach M, Holig P, Schlosser E, Volkel T, Graser A, Muller R, et al. Isolation from phage display libraries of lysine-deficient human epidermal growth factor variants for directional conjugation as targeting ligands. Protein Eng. 2003;16(12):1107–13.

    Article  CAS  PubMed  Google Scholar 

  53. Piersanti S, Cherubini G, Martina Y, Salone B, Avitabile D, Grosso F, et al. Mammalian cell transduction and internalization properties of lambda phages displaying the full-length adenoviral penton base or its central domain. J Mol Med (Berl). 2004;82(7):467–76.

    Article  CAS  Google Scholar 

  54. Lankes HA, Zanghi CN, Santos K, Capella C, Duke CM, Dewhurst S. In vivo gene delivery and expression by bacteriophage lambda vectors. J Appl Microbiol. 2007;102(5):1337–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Wen WH, Qin WJ, Gao H, Zhao J, Jia LT, Liao QH, et al. An hepatitis B virus surface antigen specific single chain of variable fragment derived from a natural immune antigen binding fragment phage display library is specifically internalized by HepG2.2.15 cells. J Viral Hepat. 2007;14(7):512–9.

    Article  PubMed  Google Scholar 

  56. Delhalle S, Schmit JC, Chevigne A. Phages and HIV-1: from display to interplay. Int J Mol Sci. 2012;13(4):4727–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Manchester M, Singh P. Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev. 2006;58(14):1505–22.

    Article  CAS  PubMed  Google Scholar 

  58. Bakhshinejad B, Sadeghizadeh M. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems. Expert Opin Drug Deliv. 2014; 1–14. doi:10.1517/17425247.2014.927437.

  59. Chanishvili N. Phage therapy—history from Twort and d’Herelle through Soviet experience to current approaches. Adv Virus Res. 2012;83:3–40.

    Article  CAS  PubMed  Google Scholar 

  60. Khalaj-Kondori M, Sadeghizadeh M, Behmanesh M, Saggio I, Monaci P. Chemical coupling as a potent strategy for preparation of targeted bacteriophage-derived gene nanocarriers into eukaryotic cells. J Gene Med. 2011;13(11):622–31.

    Article  CAS  PubMed  Google Scholar 

  61. Jepson CD, March JB. Bacteriophage lambda is a highly stable DNA vaccine delivery vehicle. Vaccine. 2004;22(19):2413–9.

    Article  CAS  PubMed  Google Scholar 

  62. Rentero I, Heinis C. Screening of large molecule diversities by phage display. Chimia. 2011;65(11):843–5.

    Article  CAS  PubMed  Google Scholar 

  63. Fagerlund A, Myrset AH, Kulseth MA. Construction of a filamentous phage display peptide library. Methods Mol Biol. 2014;1088:19–33.

    Article  PubMed  Google Scholar 

  64. O’Neil KT, Hoess RH, Jackson SA, Ramachandran NS, Mousa SA, DeGrado WF. Identification of novel peptide antagonists for GPIIb/IIIa from a conformationally constrained phage peptide library. Proteins. 1992;14(4):509–15.

    Article  PubMed  Google Scholar 

  65. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res. 2010;339(1):269–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Lyle C, McCormick F. Integrin alphavbeta5 is a primary receptor for adenovirus in CAR-negative cells. Virol J. 2010;7:148.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Hutt-Fletcher LM, Chesnokova LS. Integrins as triggers of Epstein–Barr virus fusion and epithelial cell infection. Virulence. 2010;1(5):395–8.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Campadelli-Fiume G, Menotti L, Avitabile E, Gianni T. Viral and cellular contributions to herpes simplex virus entry into the cell. Curr Opin Virol. 2012;2(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  69. Hauck CR, Borisova M, Muenzner P. Exploitation of integrin function by pathogenic microbes. Curr Opin Cell Biol. 2012;24(5):637–44.

    Article  CAS  PubMed  Google Scholar 

  70. Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8(5):215.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Hart SL, Knight AM, Harbottle RP, Mistry A, Hunger HD, Cutler DF, et al. Cell binding and internalization by filamentous phage displaying a cyclic Arg–Gly–Asp-containing peptide. J Biol Chem. 1994;269(17):12468–74.

    CAS  PubMed  Google Scholar 

  72. Dunn IS. Mammalian cell binding and transfection mediated by surface-modified bacteriophage lambda. Biochimie. 1996;78(10):856–61.

    Article  CAS  PubMed  Google Scholar 

  73. Bedi D, Gillespie JW, Petrenko VA Jr, Ebner A, Leitner M, Hinterdorfer P, et al. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins. Mol Pharm. 2013;10(2):551–9.

    Article  CAS  PubMed  Google Scholar 

  74. Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–6.

    Article  CAS  PubMed  Google Scholar 

  75. Grifman M, Trepel M, Speece P, Gilbert LB, Arap W, Pasqualini R, et al. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther. 2001;3(6):964–75.

    Article  CAS  PubMed  Google Scholar 

  76. Liu L, Anderson WF, Beart RW, Gordon EM, Hall FL. Incorporation of tumor vasculature targeting motifs into moloney murine leukemia virus env escort proteins enhances retrovirus binding and transduction of human endothelial cells. J Virol. 2000;74(11):5320–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E. Nanocrystal targeting in vivo. Proc Natl Acad Sci U S A. 2002;99(20):12617–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Hamzeh-Mivehroud M, Mahmoudpour A, Rezazadeh H, Dastmalchi S. Non-specific translocation of peptide-displaying bacteriophage particles across the gastrointestinal barrier. Eur J Pharm Biopharm. 2008;70(2):577–81.

    Article  CAS  PubMed  Google Scholar 

  79. Costantini TW, Eliceiri BP, Putnam JG, Bansal V, Baird A, Coimbra R. Intravenous phage display identifies peptide sequences that target the burn-injured intestine. Peptides. 2012;38(1):94–9.

    Article  CAS  PubMed  Google Scholar 

  80. Chen Y, Shen Y, Guo X, Zhang C, Yang W, Ma M, et al. Transdermal protein delivery by a coadministered peptide identified via phage display. Nat Biotechnol. 2006;24(4):455–60.

    Article  CAS  PubMed  Google Scholar 

  81. Li J, Zhang Q, Pang Z, Wang Y, Liu Q, Guo L, et al. Identification of peptide sequences that target to the brain using in vivo phage display. Amino Acids. 2012;42(6):2373–81.

    Article  CAS  PubMed  Google Scholar 

  82. Wan XM, Chen YP, Xu WR, Yang WJ, Wen LP. Identification of nose-to-brain homing peptide through phage display. Peptides. 2009;30(2):343–50.

    Article  CAS  PubMed  Google Scholar 

  83. Kassner PD, Burg MA, Baird A, Larocca D. Genetic selection of phage engineered for receptor-mediated gene transfer to mammalian cells. Biochem Biophys Res Commun. 1999;264(3):921–8.

    Article  CAS  PubMed  Google Scholar 

  84. Larocca D, Burg MA, Jensen-Pergakes K, Ravey EP, Gonzalez AM, Baird A. Evolving phage vectors for cell targeted gene delivery. Curr Pharm Biotechnol. 2002;3(1):45–57.

    Article  CAS  PubMed  Google Scholar 

  85. Filee J, Tetart F, Suttle CA, Krisch HM. Marine T4-type bacteriophages, a ubiquitous component of the dark matter of the biosphere. Proc Natl Acad Sci U S A. 2005;102(35):12471–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to express our sincere appreciation to our friends and colleagues at the Genetics Department of Tarbiat Modares University for their encouraging supports and helpful discussions.

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Sadeghizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshinejad, B., Karimi, M. & Sadeghizadeh, M. Bacteriophages and medical oncology: targeted gene therapy of cancer. Med Oncol 31, 110 (2014). https://doi.org/10.1007/s12032-014-0110-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0110-9

Keywords

Navigation