Skip to main content

Advertisement

Log in

Mammalian cell transduction and internalization properties of λ phages displaying the full-length adenoviral penton base or its central domain

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In recent years a strong effort has been devoted to the search for new, safe and efficient gene therapy vectors. Phage λ is a promising backbone for the development of new vectors: its genome can host large inserts, DNA is protected from degradation by the capsid and the ligand-exposed D and V proteins can be extensively modified. Current phage-based vectors are inefficient and/or receptor-independent transducers. To produce new, receptor-selective and transduction-efficient vectors for mammalian cells we engineered λ by inserting into its genome a GFP expression cassette, and by displaying the penton base (Pb) of adenovirus or its central region (amino acids 286–393). The Pb mediates attachment, entry and endosomal escape of adenovirus in mammalian cells, and its central region (amino acids 286–393) includes the principal receptor-binding motif (340RGD342). Both the phage chimerae λ Pb and λ Pb (286–393) were able to transduce cell lines and primary cultures of human fibroblasts. Competition experiments showed that the transduction pathway was receptor-dependent. We also describe the different trafficking properties of λ Pb and λ Pb (286–393). Bafilomycin, which blocks endosome maturation, influenced the intracellular distribution of λ Pb (286–393), but not that of λ Pb. The proteasome inhibitor MG-132 improved the efficiency of λ Pb (286–393)-mediated transduction, but not that of λ Pb. In summary, this work shows the feasibility of using λ phage as an efficient vector for gene transfer into mammalian cells. We show that λ Pb and λ Pb (286–393) can both mediate receptor-dependent transduction; while only λ Pb is able to promote endosomal escape and proteasome resistance of phage particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thomas C, Ehrhardt A, Kay M (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358

    Article  CAS  PubMed  Google Scholar 

  2. Chen D, Murphy B, Sung R, Bromberg I (2003) Adaptive and innate immune responses to gene transfer vectors: role of cytokines and chemokines in vector function. Gene Ther 10:991–998

    Article  CAS  PubMed  Google Scholar 

  3. Herweijer H, Wolff J (2003) Progress and prospects: naked DNA gene transfer and therapy. Gene Ther 10:453–458

    Article  PubMed  Google Scholar 

  4. Schmidt-Wolf G, Schmidt-Wolf I (2003) Non-viral and hybrid vectors in human gene therapy: an update. Trends Mol Med 9:67–72

    Google Scholar 

  5. Di Giovine M, Salone B, Martina Y, Amati V, Zambruno G, Cundari E, Failla C, Saggio I (2001) Binding properties, cell delivery and gene transfer of adenoviral penton base-displaying bacteriophage. Virology 282:102–112

    Article  PubMed  Google Scholar 

  6. Hart S, Knight A, Harbottle R, Mistry A, Hunger H, Cutler D, Williamson R, Coutelle C (1994) Cell binding and internalization by filamentous phage displaying a cyclic Arg-Gly-Asp containing peptide. J Biol Chem 269:12468–12474

    CAS  PubMed  Google Scholar 

  7. Larocca D, Witte A, Johnson W, Pierce GF, Baird A (1998) Targeting bacteriophage to mammalian cell surface receptors for gene delivery. Hum Gene Ther 9:2393–2399

    CAS  PubMed  Google Scholar 

  8. Larocca D, Kassner P, Witte A, Ladner R, Pierce G, Baird A (1999) Gene transfer to mammalian cells using genetically targeted filamentous bacteriophages. FASEB J 6:727–734

    Google Scholar 

  9. Larocca D, Jensen-Pergakes K, Burg M, Baird A (2001) Receptor-targeted gene delivery using multivalent phagemid particles. Mol Ther 3:476–484

    Article  CAS  PubMed  Google Scholar 

  10. Poul M, Marks J (1999) Targeted gene delivery to mammalian cells by filamentous phage. J Mol Biol 288:203–211

    Article  CAS  PubMed  Google Scholar 

  11. Felici F, Luzzago A, Monaci P, Nicosia A, Sollazzo M, Traboni C (1995) Peptide and protein display on the surface of filamentous bacteriophages. Biotechnol Annu Rev 1:149–183

    CAS  PubMed  Google Scholar 

  12. Hufton S, Moerkerk P, Meulemans E, de Bruine A, Arends J, Hoogenboom H (1999) Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands. J Immunol Methods 231:39–51

    Article  CAS  PubMed  Google Scholar 

  13. Maruyama IN, Brenner S (1992) A selective lambda phage cloning vector with automatic excision of the insert in a plasmid. Gene 120:135–141

    Article  CAS  PubMed  Google Scholar 

  14. Parks RJ, Bramson JL, Wan Y, Addison CL, Graham FL (1999) Effects of stuffer DNA on transgene expression from helper-dependent adenovirus vectors. J Virol 73:8027–8034

    CAS  PubMed  Google Scholar 

  15. Heller H, Kammer C, Wilgenbus P, Doerfler W (1995) Chromosomal insertion of foreign (adenovirus type 12, plasmid, or bacteriophage lambda) DNA is associated with enhanced methylation of cellular DNA segments. Proc Natl Acad Sci USA 92:5515–5519

    CAS  Google Scholar 

  16. Kessner P, Burg M, Baird A, Larocca D (1999) Genetic selection of phage engineered for receptor-mediated gene transfer to mammalian cells. Bioch Biophys Res Comm 264:921–928

    Article  Google Scholar 

  17. Eguchi A, Akuta H, Senda T, Yokoi H, Inokuchi H, Fujita S, Hayakawa T, Takeda K, Hasegawa M, Nakanishi M (2001) Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem 276:26204–26210

    Article  PubMed  Google Scholar 

  18. Dunn I (1995) Assembly of functional bacteriophage lambda virions incorporating C-terminal peptide or protein fusions with the major tail protein. J Mol Biol 248:497–506

    Article  PubMed  Google Scholar 

  19. Mikawa Y, Maruyama I, Brenner S (1996) Surface display of proteins on bacteriophage lambda heads. J Mol Biol 262:21–30

    Article  PubMed  Google Scholar 

  20. Santi E, Capone S, Mennuni C, Lahm A, Tramontano A, Luzzago A, Nicosia A (2000) Bacteriophage lambda display of complex cDNA libraries: a new approach to functional genomics. J Mol Biol 296:497–508

    Article  PubMed  Google Scholar 

  21. Hong S, Gay B, Karayan L, Dabauvalle M, Boulanger P (1999) Cellular uptake and nuclear delivery of recombinant adenovirus penton base. Virology 262:163–177

    Article  PubMed  Google Scholar 

  22. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73:309–319

    CAS  PubMed  Google Scholar 

  23. Li E, Brown S, Stupack D, Puente X, Cheresh D, Nemerow G (2001) Integrin αvβ1 is an adenovirus coreceptor. J Virol 75:5405–5409

    Article  CAS  PubMed  Google Scholar 

  24. Salone B, Martina Y, Piersanti S, Cundari E, Cherubini G, Franqueville L, Failla C, Saggio I (2003) Integrin alpha3beta1 is an alternative receptor for adenovirus serotype 5. J Virol 77:13448–13454

    Article  CAS  PubMed  Google Scholar 

  25. Stratford-Perricaudet LD, Makeh I, Perricaudet M, Briand P (1992) Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 90:626–630

    CAS  PubMed  Google Scholar 

  26. Sternberg N, Hoess R (1995) Display of peptides and proteins on the surface of bacteriophage λ. Proc Natl Acad Sci USA 92:1609–1613

    CAS  PubMed  Google Scholar 

  27. Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8:257–260

    Google Scholar 

  28. Piazza C, Gilardini-Montani MS, Moretti S, Cundari E, Piccolella E (1997) Cutting edge: CD4+ T cells kill CD8+ T cells via Fas/Fas ligand-mediated apoptosis. J Immunol 158:1503–1506

    CAS  PubMed  Google Scholar 

  29. Ruoslathi E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  CAS  PubMed  Google Scholar 

  30. Bayer N, Schober D, Prchla E, Murphy R, Blaas D, Fuchs R (1998) Effect of bafilomycin A1 and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J Virol 72:9645–9655

    CAS  PubMed  Google Scholar 

  31. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135

    CAS  PubMed  Google Scholar 

  32. Douar A, Poulard K, Stockholm D, Danos O (2001) Intracellular trafficking of adeno-associated virus vectors: routing to late endosomal compartment and proteasome degradation. J Virol 75:1824–1833

    Article  CAS  PubMed  Google Scholar 

  33. Burg M, Jensen-Pergakes K, Gonzalez A, Ravey P, Baird A, Larocca D (2002) Enhanced phagemid particle gene transfer in camptothecin-treated carcinoma cells. Cancer Res 62:977–981

    CAS  PubMed  Google Scholar 

  34. Karayan L, Hong SS, Gay B, Tournier J, Angeac ADD, Boulanger P (1997) Structural and functional determinants in adenovirus type 2 penton base recombinant protein. J Virol 71:8678–8679

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by contributions from CNR, Progetto Finalizzato Biotecnologie, Istituto Pasteur Cenci Bolognetti, Università di Roma La Sapienza, MIUR, and Consorzio Interuniversitario Biotecnologie. We are grateful to P. Boulanger, A. Orecchia, and M. Nakanishi for their gifts of materials. We thank G. Ragone, F. Nasorri, M.C. Bonaccorsi, V. Velotta and P. Orlando for technical assistance, and L. Cordier, P. Bianco and C.M. Failla for fruitful scientific discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Saggio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piersanti, S., Cherubini, G., Martina, Y. et al. Mammalian cell transduction and internalization properties of λ phages displaying the full-length adenoviral penton base or its central domain. J Mol Med 82, 467–476 (2004). https://doi.org/10.1007/s00109-004-0543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0543-2

Keywords

Navigation