Skip to main content

Advertisement

Log in

The significance of heat shock proteins in breast cancer therapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The evalutionary conserved heat shock proteins are involved basically life protecting mechanisms against harmful extracellular effects such as primarily heat shock response. Normally, the expression of these proteins is increased for cellular adaptation to high temperature. This increase is also important in the etiology of breast cancer. Overexpression of heat shock proteins is associated with reduced disease-free survival in breast cancer. However, increased expression of these proteins is related to acquired resistance of traditional chemotherapeutic drugs in use in breast cancer treatment. In this review, we discuss the multiple roles of heatshock proteins in resistance and where we are to overcome this in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciocca DR, Calderwood SK. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones. 2005;10:86–103.

    Article  PubMed  CAS  Google Scholar 

  2. Georgopoulos C, Welch WJ. Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol. 1993;9:601–34.

    Article  PubMed  CAS  Google Scholar 

  3. Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell. 1991;66:191–7.

    Article  PubMed  CAS  Google Scholar 

  4. Gething MJ, Sambrook J. Protein folding in the cell. Nature. 1992;355:33–45.

    Article  PubMed  CAS  Google Scholar 

  5. Netzer WJ, Hartl FU. Protein folding in the cytosol: chaperonin-dependent and -independent mechanisms. Trends Biochem Sci. 1998;23:68–73.

    Article  PubMed  CAS  Google Scholar 

  6. Freeman BC, Yamamoto KR. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science. 2002;296:2232–5.

    Article  PubMed  CAS  Google Scholar 

  7. Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature. 2002;417:618–24.

    Article  PubMed  CAS  Google Scholar 

  8. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5:761–72.

    Article  PubMed  CAS  Google Scholar 

  9. O’Neill PA, et al. Increased risk of malignant progression in benign proliferating breast lesions defined by expression of heat shock protein 27. Br J Cancer. 2004;90:182–8.

    Article  PubMed  Google Scholar 

  10. Kim LS, Kim JH. Heat shock protein as molecular targets for breast cancer therapeutics. J Breast Cancer. 2011;14:167–74.

    Article  PubMed  Google Scholar 

  11. Kang SH, et al. Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability. BMC Cancer. 2008;8:286.

    Article  PubMed  Google Scholar 

  12. Hansen RK, et al. Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat. 1999;56:187–96.

    Article  PubMed  CAS  Google Scholar 

  13. Oesterreich S, et al. The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res. 1993;53:4443–8.

    PubMed  CAS  Google Scholar 

  14. Wei L, et al. Hsp27 participates in the maintenance of breast cancer stem cells through regulation of epithelial-mesenchymal transition and nuclear factor-kappaB. Breast Cancer Res. 2011;13:R101.

    Article  PubMed  CAS  Google Scholar 

  15. Shin KD, et al. Blocking tumor cell migration and invasion with biphenyl isoxazole derivative KRIBB3, a synthetic molecule that inhibits Hsp27 phosphorylation. J Biol Chem. 2005;280:41439–48.

    Article  PubMed  CAS  Google Scholar 

  16. Cayado-Gutierrez N, et al. Downregulation of Hsp27 (HSPB1) in MCF-7 human breast cancer cells induces upregulation of PTEN. Cell Stress Chaperones. 2013;18:243–9.

    Article  PubMed  CAS  Google Scholar 

  17. Straume O, et al. Suppression of heat shock protein 27 induces long-term dormancy in human breast cancer. Proc Natl Acad Sci USA. 2012;109:8699–704.

    Article  PubMed  CAS  Google Scholar 

  18. Sarkar R, et al. Sulphoraphane, a naturally occurring isothiocyanate induces apoptosis in breast cancer cells by targeting heat shock proteins. Biochem Biophys Res Commun. 2012;427:80–5.

    Article  PubMed  CAS  Google Scholar 

  19. Sims JT, et al. Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-kappaB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS ONE. 2013;8:e55509.

    Article  PubMed  CAS  Google Scholar 

  20. Antoon JW, et al. Pharmacology and anti-tumor activity of RWJ67657, a novel inhibitor of p38 mitogen activated protein kinase. Am J Cancer Res. 2012;2:446–58.

    PubMed  CAS  Google Scholar 

  21. Lee CH, et al. Inhibition of heat shock protein (Hsp) 27 potentiates the suppressive effect of Hsp90 inhibitors in targeting breast cancer stem-like cells. Biochimie. 2012;94:1382–9.

    Article  PubMed  CAS  Google Scholar 

  22. Vargas-Roig LM, et al. Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer. 1998;79:468–75.

    Article  PubMed  CAS  Google Scholar 

  23. Ciocca DR, et al. Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. J Natl Cancer Inst. 1993;85:570–4.

    Article  PubMed  CAS  Google Scholar 

  24. Hansen RK, et al. Quercetin inhibits heat shock protein induction but not heat shock factor DNA-binding in human breast carcinoma cells. Biochem Biophys Res Commun. 1997;239:851–6.

    Article  PubMed  CAS  Google Scholar 

  25. Nylandsted J, et al. Selective depletion of heat shock protein 70 (Hsp70) activates a tumor-specific death program that is independent of caspases and bypasses Bcl-2. Proc Natl Acad Sci USA. 2000;97:7871–6.

    Article  PubMed  CAS  Google Scholar 

  26. Nylandsted J, Brand K, Jaattela M. Heat shock protein 70 is required for the survival of cancer cells. Ann N Y Acad Sci. 2000;926:122–5.

    Article  PubMed  CAS  Google Scholar 

  27. Barnes JA, et al. Expression of inducible Hsp70 enhances the proliferation of MCF-7 breast cancer cells and protects against the cytotoxic effects of hyperthermia. Cell Stress Chaperones. 2001;6:316–25.

    Article  PubMed  CAS  Google Scholar 

  28. Kalogeraki A, et al. Correlation of heat shock protein (HSP70) expression with cell proliferation (MIB1), estrogen receptors (ER) and clinicopathological variables in invasive ductal breast carcinomas. J Exp Clin Cancer Res. 2007;26:367–8.

    PubMed  CAS  Google Scholar 

  29. Davidoff AM, Iglehart JD, Marks JR. Immune response to p53 is dependent upon p53/HSP70 complexes in breast cancers. Proc Natl Acad Sci USA. 1992;89:3439–42.

    Article  PubMed  CAS  Google Scholar 

  30. Sims JD, McCready J, Jay DG. Extracellular heat shock protein (Hsp)70 and Hsp90alpha assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS ONE. 2011;6:e18848.

    Article  PubMed  CAS  Google Scholar 

  31. Chen CH, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res. 2000;60:1035–42.

    PubMed  CAS  Google Scholar 

  32. Kim JH, et al. Enhanced immunity by NeuEDhsp70 DNA vaccine Is needed to combat an aggressive spontaneous metastatic breast cancer. Mol Ther. 2005;11:941–9.

    Article  PubMed  CAS  Google Scholar 

  33. Hauser H, et al. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther. 2004;11:924–32.

    Article  PubMed  CAS  Google Scholar 

  34. Pakravan N, Soudi S, Hassan ZM. N-terminally fusion of Her2/neu to HSP70 decreases efficiency of Her2/neu DNA vaccine. Cell Stress Chaperones. 2010;15:631–8.

    Article  PubMed  CAS  Google Scholar 

  35. Cheng Q, et al. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res. 2012;14:R62.

    Article  PubMed  CAS  Google Scholar 

  36. Pick E, et al. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007;67:2932–7.

    Article  PubMed  CAS  Google Scholar 

  37. Yano M, et al. Expression and roles of heat shock proteins in human breast cancer. Jpn J Cancer Res. 1996;87:908–15.

    Article  PubMed  CAS  Google Scholar 

  38. Giordano C, et al. Leptin increases HER2 protein levels through a STAT3-mediated up-regulation of Hsp90 in breast cancer cells. Mol Oncol. 2012;7891:123–8.

    Google Scholar 

  39. El Hamidieh A, Grammatikakis N, Patsavoudi E. Cell surface Cdc37 participates in extracellular HSP90 mediated cancer cell invasion. PLoS ONE. 2012;7:e42722.

    Article  PubMed  Google Scholar 

  40. Yano M, et al. Expression of hsp90 and cyclin D1 in human breast cancer. Cancer Lett. 1999;137:45–51.

    Article  PubMed  CAS  Google Scholar 

  41. Kang SA, et al. Hsp90 rescues PTK6 from proteasomal degradation in breast cancer cells. Biochem J. 2012;447:313–20.

    Article  PubMed  CAS  Google Scholar 

  42. Zuo K, et al. Short-hairpin RNA-mediated Heat shock protein 90 gene silencing inhibits human breast cancer cell growth in vitro and in vivo. Biochem Biophys Res Commun. 2012;421:396–402.

    Article  PubMed  CAS  Google Scholar 

  43. Cooper LC, et al. Hsp90alpha/beta associates with the GSK3beta/axin1/phospho-beta-catenin complex in the human MCF-7 epithelial breast cancer model. Biochem Biophys Res Commun. 2011;413:550–4.

    Article  PubMed  CAS  Google Scholar 

  44. DeBoer C, et al. Geldanamycin, a new antibiotic. J Antibiot (Tokyo). 1970;23:442–7.

    Article  CAS  Google Scholar 

  45. Prodromou C, et al. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 1997;90:65–75.

    Article  PubMed  CAS  Google Scholar 

  46. Taldone T, et al. Design, synthesis, and evaluation of small molecule Hsp90 probes. Bioorg Med Chem. 2011;19:2603–14.

    Article  PubMed  CAS  Google Scholar 

  47. Wang K, et al. Geldanamycin destabilizes HER2 tyrosine kinase and suppresses Wnt/beta-catenin signaling in HER2 overexpressing human breast cancer cells. Oncol Rep. 2007;17:89–96.

    PubMed  Google Scholar 

  48. Pedersen NM, et al. Geldanamycin-induced down-regulation of ErbB2 from the plasma membrane is clathrin dependent but proteasomal activity independent. Mol Cancer Res. 2008;6:491–500.

    Article  PubMed  CAS  Google Scholar 

  49. Mandler R, et al. Immunoconjugates of geldanamycin and anti-HER2 monoclonal antibodies: antiproliferative activity on human breast carcinoma cell lines. J Natl Cancer Inst. 2000;92:1573–81.

    Article  PubMed  CAS  Google Scholar 

  50. Supko JG, et al. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol. 1995;36:305–15.

    Article  PubMed  CAS  Google Scholar 

  51. Schulte TW, Neckers LM. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol. 1998;42:273–9.

    Article  PubMed  CAS  Google Scholar 

  52. Schulz R, et al. Inhibiting the HSP90 chaperone destabilizes macrophage migration inhibitory factor and thereby inhibits breast tumor progression. J Exp Med. 2012;209:275–89.

    Article  PubMed  CAS  Google Scholar 

  53. Schulz R, Dobbelstein M, Moll UM. HSP90 inhibitor antagonizing MIF: the specifics of pleiotropic cancer drug candidates. Oncoimmunology. 2012;1:1425–6.

    Article  PubMed  Google Scholar 

  54. Rodrigues LM, et al. Effects of HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) on NEU/HER2 overexpressing mammary tumours in MMTV-NEU-NT mice monitored by Magnetic Resonance Spectroscopy. BMC Res Notes. 2012;5:250.

    Article  PubMed  CAS  Google Scholar 

  55. Modi S, et al. HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res. 2011;17:5132–9.

    Article  PubMed  CAS  Google Scholar 

  56. Gartner EM, et al. A phase II study of 17-allylamino-17-demethoxygeldanamycin in metastatic or locally advanced, unresectable breast cancer. Breast Cancer Res Treat. 2012;131:933–7.

    Article  PubMed  CAS  Google Scholar 

  57. Nowakowski GS, et al. A phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin Cancer Res. 2006;12(20 Pt 1):6087–93.

    Article  PubMed  CAS  Google Scholar 

  58. Wong C, et al. AKT-aro and HER2-aro, models for de novo resistance to aromatase inhibitors; molecular characterization and inhibitor response studies. Breast Cancer Res Treat. 2012;134:671–81.

    Article  PubMed  CAS  Google Scholar 

  59. Jhaveri K, et al. A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (KOS-1022; 17 DMAG) in the treatment of advanced solid tumors. Clin Cancer Res. 2012;18:5090–8.

    Article  PubMed  CAS  Google Scholar 

  60. Aregbe AO, et al. Population pharmacokinetic analysis of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) in adult patients with solid tumors. Cancer Chemother Pharmacol. 2012;70:201–5.

    Article  PubMed  CAS  Google Scholar 

  61. Jego G et al. Targeting heat shock proteins in cancer. 2010 Nov 13. [Epub ahead of print].

Download references

Conflict of interest

The authors indicated no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadri Altundag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oskay Halacli, S., Halacli, B. & Altundag, K. The significance of heat shock proteins in breast cancer therapy. Med Oncol 30, 575 (2013). https://doi.org/10.1007/s12032-013-0575-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-013-0575-y

Keywords

Navigation