Skip to main content

Advertisement

Log in

AKT-aro and HER2-aro, models for de novo resistance to aromatase inhibitors; molecular characterization and inhibitor response studies

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Aromatase inhibitors (AI) are currently the first line therapy for estrogen receptor (ER)-positive postmenopausal women. De novo AI resistance is when a patient intrinsically does not respond to an AI therapy as well as other targeted endocrine therapy. To characterize this type of resistance and to examine potential therapies for treatment, we have generated two cell models for de novo resistance. These models derive from MCF-7 cells that stably overexpress aromatase and Akt (AKT-aro) or HER2 (HER2-aro). Evaluation of these cell lines revealed that the activities of aromatase and ER were inhibited by AI and ICI 187280 (ICI) treatment, respectively; however, cell growth was resistant to therapy. Proliferation in the presence of the pure anti-estrogen ICI, indicates that these cells do not require ER for cell growth and distinguishes these cells from the acquired AI resistant cells. We further determined that the HSP90 inhibitor 17-DMAG suppressed the growth of the AI-resistant cell lines studied. Our analysis revealed 17-DMAG-mediated decreased expression of growth promoting signaling proteins. It was found that de novo AI resistant AKT-aro and HER2-aro cells could not be resensitized to letrozole or ICI by treatment with 17-DMAG. In summary, we have generated two cell lines which display the characteristics of de novo AI resistance. Together, these data indicate the possibility that HSP90 inhibitors may be a viable therapy for endocrine therapy resistance although additional clinical evaluation is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lonning PE (2004) Aromatase inhibitors in breast cancer. Endocr Relat Cancer 11:179–189

    Article  PubMed  CAS  Google Scholar 

  2. Altundag K, Ibrahim NK (2006) Aromatase inhibitors in breast cancer: an overview. Oncologist 11:553–562

    Article  PubMed  CAS  Google Scholar 

  3. Jelovac D, Sabnis G, Long BJ, Macedo L, Goloubeva OG, Brodie AM (2005) Activation of mitogen-activated protein kinase in xenografts and cells during prolonged treatment with aromatase inhibitor letrozole. Cancer Res 65:5380–5389

    Article  PubMed  CAS  Google Scholar 

  4. Sabnis G, Goloubeva O, Jelovac D, Schayowitz A, Brodie A (2007) Inhibition of the phosphatidylinositol 3-kinase/Akt pathway improves response of long-term estrogen-deprived breast cancer xenografts to antiestrogens. Clin Cancer Res 13:2751–2757

    Article  PubMed  CAS  Google Scholar 

  5. Song RX, Fan P, Yue W, Chen Y, Santen RJ (2006) Role of receptor complexes in the extranuclear actions of estrogen receptor alpha in breast cancer. Endocr Relat Cancer 13(Suppl 1):S3–S13

    Article  PubMed  CAS  Google Scholar 

  6. Gee JM, Robertson JF, Gutteridge E, Ellis IO, Pinder SE, Rubini M, Nicholson RI (2005) Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 12(Suppl 1):S99–S111

    Article  PubMed  CAS  Google Scholar 

  7. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926–935

    Article  PubMed  CAS  Google Scholar 

  8. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  PubMed  CAS  Google Scholar 

  9. Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, Arteaga CL (2000) Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 60:5887–5894

    PubMed  CAS  Google Scholar 

  10. Benz CC, Scott GK, Sarup JC, Johnson RM, Tripathy D, Coronado E, Shepard HM, Osborne CK (1992) Estrogen-dependent, tamoxifen-resistant tumorigenic growth of MCF-7 cells transfected with HER2/neu. Breast Cancer Res Treat 24:85–95

    Article  PubMed  CAS  Google Scholar 

  11. Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the primary therapy of early breast cancer 2011. Ann Oncol 22:1736–1747

    Article  PubMed  CAS  Google Scholar 

  12. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, Perou CM, Ellis MJ, Nielsen TO (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst 101:736–750

    Article  PubMed  CAS  Google Scholar 

  13. Tokunaga E, Kimura Y, Oki E, Ueda N, Futatsugi M, Mashino K, Yamamoto M, Ikebe M, Kakeji Y, Baba H, Maehara Y (2006) Akt is frequently activated in HER2/neu-positive breast cancers and associated with poor prognosis among hormone-treated patients. Int J Cancer 118:284–289

    Article  PubMed  CAS  Google Scholar 

  14. Tokunaga E, Kataoka A, Kimura Y, Oki E, Mashino K, Nishida K, Koga T, Morita M, Kakeji Y, Baba H, Ohno S, Maehara Y (2006) The association between Akt activation and resistance to hormone therapy in metastatic breast cancer. Eur J Cancer 42:629–635

    Article  PubMed  CAS  Google Scholar 

  15. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14:381–395

    Article  PubMed  CAS  Google Scholar 

  16. Chung YL, Sheu ML, Yang SC, Lin CH, Yen SH (2002) Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int J Cancer 97:306–312

    Article  PubMed  CAS  Google Scholar 

  17. Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, Slamon DJ (1995) HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10:2435–2446

    PubMed  CAS  Google Scholar 

  18. Wong C, Chen S (2009) Heat shock protein 90 inhibitors: new mode of therapy to overcome endocrine resistance. Cancer Res 69:8670–8677

    Article  PubMed  CAS  Google Scholar 

  19. Stal O, Perez-Tenorio G, Akerberg L, Olsson B, Nordenskjold B, Skoog L, Rutqvist LE (2003) Akt kinases in breast cancer and the results of adjuvant therapy. Breast Cancer Res 5:R37–R44

    Article  PubMed  CAS  Google Scholar 

  20. Fisher R (1932) Statistical methods for research workers. Oliver and Boyd, Edinburgh

    Google Scholar 

  21. Team RDC (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  22. Gerds T (2011) R prodlim package. University of Copenhagen, Copenhagen

    Google Scholar 

  23. Zhou DJ, Pompon D, Chen SA (1990) Stable expression of human aromatase complementary DNA in mammalian cells: a useful system for aromatase inhibitor screening. Cancer Res 50:6949–6954

    PubMed  CAS  Google Scholar 

  24. Masri S, Phung S, Wang X, Wu X, Yuan YC, Wagman L, Chen S (2008) Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor. Cancer Res 68:4910–4918

    Article  PubMed  CAS  Google Scholar 

  25. Glaros S, Atanaskova N, Zhao C, Skafar DF, Reddy KB (2006) Activation function-1 domain of estrogen receptor regulates the agonistic and antagonistic actions of tamoxifen. Mol Endocrinol 20:996–1008

    Article  PubMed  CAS  Google Scholar 

  26. Wright C, Nicholson S, Angus B, Sainsbury JR, Farndon J, Cairns J, Harris AL, Horne CH (1992) Relationship between c-erbB-2 protein product expression and response to endocrine therapy in advanced breast cancer. Br J Cancer 65:118–121

    Article  PubMed  CAS  Google Scholar 

  27. Houston SJ, Plunkett TA, Barnes DM, Smith P, Rubens RD, Miles DW (1999) Overexpression of c-erbB2 is an independent marker of resistance to endocrine therapy in advanced breast cancer. Br J Cancer 79:1220–1226

    Article  PubMed  CAS  Google Scholar 

  28. Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, Elledge RM (2005) Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97:1254–1261

    Article  PubMed  CAS  Google Scholar 

  29. Leitzel K, Teramoto Y, Konrad K, Chinchilli VM, Volas G, Grossberg H, Harvey H, Demers L, Lipton A (1995) Elevated serum c-erbB-2 antigen levels and decreased response to hormone therapy of breast cancer. J Clin Oncol 13:1129–1135

    PubMed  CAS  Google Scholar 

  30. Borg A, Baldetorp B, Ferno M, Killander D, Olsson H, Ryden S, Sigurdsson H (1994) ERBB2 amplification is associated with tamoxifen resistance in steroid-receptor positive breast cancer. Cancer Lett 81:137–144

    Article  PubMed  CAS  Google Scholar 

  31. Yamauchi H, O’Neill A, Gelman R, Carney W, Tenney DY, Hosch S, Hayes DF (1997) Prediction of response to antiestrogen therapy in advanced breast cancer patients by pretreatment circulating levels of extracellular domain of the HER-2/c-neu protein. J Clin Oncol 15:2518–2525

    PubMed  CAS  Google Scholar 

  32. De Laurentiis M, Arpino G, Massarelli E, Ruggiero A, Carlomagno C, Ciardiello F, Tortora G, D’Agostino D, Caputo F, Cancello G, Montagna E, Malorni L, Zinno L, Lauria R, Bianco AR, De Placido S (2005) A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res 11:4741–4748

    Article  PubMed  Google Scholar 

  33. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H (2001) Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276:9817–9824

    Article  PubMed  CAS  Google Scholar 

  34. Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270:1491–1494

    Article  PubMed  CAS  Google Scholar 

  35. Sabnis GJ, Jelovac D, Long B, Brodie A (2005) The role of growth factor receptor pathways in human breast cancer cells adapted to long-term estrogen deprivation. Cancer Res 65:3903–3910

    Article  PubMed  CAS  Google Scholar 

  36. Dowsett M, Martin LA, Smith I, Johnston S (2005) Mechanisms of resistance to aromatase inhibitors. J Steroid Biochem Mol Biol 95:167–172

    Article  PubMed  CAS  Google Scholar 

  37. Basso AD, Solit DB, Chiosis G, Giri B, Tsichlis P, Rosen N (2002) Akt forms an intracellular complex with heat shock protein 90 (Hsp90) and Cdc37 and is destabilized by inhibitors of Hsp90 function. J Biol Chem 277:39858–39866

    Article  PubMed  CAS  Google Scholar 

  38. Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L (2002) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA 99:12847–12852

    Article  PubMed  CAS  Google Scholar 

  39. Sabnis G, Schayowitz A, Goloubeva O, Macedo L, Brodie A (2009) Trastuzumab reverses letrozole resistance and amplifies the sensitivity of breast cancer cells to estrogen. Cancer Res 69:1416–1428

    Article  PubMed  CAS  Google Scholar 

  40. Miller WR, Larionov A (2010) Changes in expression of oestrogen regulated and proliferation genes with neoadjuvant treatment highlight heterogeneity of clinical resistance to the aromatase inhibitor, letrozole. Breast Cancer Res 12:R52

    Article  PubMed  Google Scholar 

  41. Chen S, Masri S, Wang X, Phung S, Yuan YC, Wu X (2006) What do we know about the mechanisms of aromatase inhibitor resistance? J Steroid Biochem Mol Biol 102:232–240

    Article  PubMed  CAS  Google Scholar 

  42. Chan CM, Martin LA, Johnston SR, Ali S, Dowsett M (2002) Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivation. J Steroid Biochem Mol Biol 81:333–341

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH grants CA44735 and ES08258 to Shiuan Chen.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiuan Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 218 kb)

Supplementary material 2 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, C., Wang, X., Smith, D. et al. AKT-aro and HER2-aro, models for de novo resistance to aromatase inhibitors; molecular characterization and inhibitor response studies. Breast Cancer Res Treat 134, 671–681 (2012). https://doi.org/10.1007/s10549-012-2105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2105-6

Keywords

Navigation