Skip to main content

Advertisement

Log in

Predictive value of Sox2 expression in transurethral resection specimens in patients with T1 bladder cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Sox2 is thought to be an important regulator of self-renewal in embryonic stem cell. According to the cancer stem cell (CSC) theory, the overexpression of Sox2 is potentially involved in carcinogenesis and could affect tumor recurrence and metastasis. Previous study proved Sox2 might be prognostic marker for multiple human malignancies. The purpose of this study was to investigate the clinicopathological significance of Sox2 expression in human non-muscle-invasive bladder cancer. We examined Sox2 expression in 32 paired non-muscle-invasive bladder cancer tissues and adjacent non-cancerous tissues by quantitative real-time RT-PCR (qrtRT-PCR). In addition, we analyzed Sox2 and Ki-67 expression in 126 non-muscle-invasive bladder cancer samples and bladder cancer cell line T24 by immunohistochemistry and immunofluorescence assays. The recurrence-free survival was determined by Kaplan–Meier method and log-rank test. Cox regression was adopted for univariate and multivariate analyses of prognostic factors. The expression of Sox2 was significantly increased in non-muscle-invasive bladder cancer tissues. Sox2 expression was significantly correlated with that of Ki-67 (P < 0.001). The expression of Sox2 was significantly associated with tumor size (P = 0.006), tumor number (P = 0.037), and tumor grade (P < 0.001). Patients with high Sox2 expression had significantly poorer recurrence-free survival (P = 0.0002) when compared with patients with the low expression of Sox2. On multivariate analysis, Sox2 expression and tumor grade were found to be independent prognostic factors for recurrence-free survival (P < 0.05). Our data suggested for the first time that the high expression of Sox2 may contribute to the development of non-muscle-invasive bladder cancer and serve as a novel prognostic marker in patients with T1 bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Yang GL, Zhang LH, Bo JJ, Chen HG, Cao M, Liu DM, Huang YR. UHRF1 is associated with tumor recurrence in non-muscle-invasive bladder cancer. Med Oncol. 2012;29:842–7.

    Article  PubMed  CAS  Google Scholar 

  3. Ferlay J, Randi G, Bosetti C, Levi F, Negri E, Boyle P, La Vecchia C. Declining mortality from bladder cancer in Europe. BJU Int. 2008;101:11–9.

    PubMed  Google Scholar 

  4. Munksgaard PP, Mansilla F, Brems Eskildsen AS, Fristrup N, Birkenkamp-Demtroder K, Ulhoi BP, Borre M, Agerbaek M, Hermann GG, Orntoft TF, Dyrskjot L. Low ANXA10 expression is associated with disease aggressiveness in bladder cancer. Br J Cancer. 2011;105:1379–87.

    Article  PubMed  CAS  Google Scholar 

  5. Millan-Rodriguez F, Chechile-Toniolo G, Salvador-Bayarri J, Palou J, Algaba F, Vicente-Rodriguez J. Primary superficial bladder cancer risk groups according to progression, mortality and recurrence. J Urol. 2000;164:680–4.

    Article  PubMed  CAS  Google Scholar 

  6. Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DW, Kurth K. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006; 49:466–5; discussion 75-7.

    Google Scholar 

  7. Hermann GG, Horn T, Steven K. The influence of the level of lamina propria invasion and the prevalence of p53 nuclear accumulation on survival in stage T1 transitional cell bladder cancer. J Urol. 1998;159:91–4.

    Article  PubMed  CAS  Google Scholar 

  8. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355:1253–61. doi:10.1056/NEJMra061808.

    Article  PubMed  CAS  Google Scholar 

  9. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11. doi:10.1038/35102167.

    Article  PubMed  CAS  Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  11. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10. doi:10.1038/nature05372.

    Article  PubMed  Google Scholar 

  12. Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells. 2012;30:363–71.

    Article  PubMed  CAS  Google Scholar 

  13. Velasco-Velazquez MA, Homsi N, De La Fuente M, Pestell RG. Breast cancer stem cells. Int J Biochem Cell Biol. 2012;44:573–7.

    Article  PubMed  CAS  Google Scholar 

  14. Li H, Tang DG. Prostate cancer stem cells and their potential roles in metastasis. J Surg Oncol. 2011;103:558–62.

    Article  PubMed  Google Scholar 

  15. Tung CL, Hou PH, Kao YL, Huang YW, Shen CC, Cheng YH, Wu SF, Lee MS, Li C. SOX2 modulates alternative splicing in transitional cell carcinoma. Biochem Biophys Res Commun. 2010;393:420–5.

    Article  PubMed  CAS  Google Scholar 

  16. Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, Onaitis MW. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS ONE. 2010;5:e11022.

    Article  PubMed  Google Scholar 

  17. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, Pandiella A, Rezola R, Martin AG. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene. 2012;31:1354–65.

    Article  PubMed  CAS  Google Scholar 

  18. Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L, Liu Y, Reisfeld RA, Xiang R, Lv D, Li N. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS ONE. 2012;7:e36326.

    Article  PubMed  CAS  Google Scholar 

  19. Neumann J, Bahr F, Horst D, Kriegl L, Engel J, Luque RM, Gerhard M, Kirchner T, Jung A. SOX2 expression correlates with lymph-node metastases and distant spread in right-sided colon cancer. BMC Cancer. 2011;11:518.

    Article  PubMed  Google Scholar 

  20. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, Lv D, Liu CH, Tan X, Xiang R, Li N. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol. 2011;3:230–8.

    Article  PubMed  CAS  Google Scholar 

  21. Cattoretti G, Becker MH, Key G, Duchrow M, Schluter C, Galle J, Gerdes J. Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol. 1992;168:357–63.

    Article  PubMed  CAS  Google Scholar 

  22. Stepan A, Simionescu C, Margaritescu C, Ciurea R. P16, c-erbB2 and Ki67 immunoexpression in urothelial carcinomas of the bladder. Rom J Morphol Embryol. 2011;52:653–8.

    PubMed  CAS  Google Scholar 

  23. Bertz S, Otto W, Denzinger S, Wieland WF, Burger M, Stohr R, Link S, Hofstadter F, Hartmann A. Combination of CK20 and Ki-67 Immunostaining analysis predicts recurrence, progression, and cancer-specific survival in pT1 Urothelial Bladder Cancer. Eur Urol. 2012. doi:10.1016/j.eururo.2012.05.033.

  24. Acikalin D, Oner U, Can C, Acikalin MF, Colak E. Predictive value of maspin and Ki-67 expression in transurethral resection specimens in patients with T1 bladder cancer. Tumori. 2012;98:344–50.

    PubMed  Google Scholar 

  25. Ge N, Lin HX, Xiao XS, Guo L, Xu HM, Wang X, Jin T, Cai XY, Liang Y, Hu WH, Kang T. Prognostic significance of Oct4 and Sox2 expression in hypopharyngeal squamous cell carcinoma. J Transl Med. 2010;8:94.

    Article  PubMed  Google Scholar 

  26. Lathia JD, Gallagher J, Myers JT, Li M, Vasanji A, McLendon RE, Hjelmeland AB, Huang AY, Rich JN. Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS ONE. 2011;6:e24807.

    Article  PubMed  CAS  Google Scholar 

  27. Falso MJ, Buchholz BA, White RW. Stem-like cells in bladder cancer cell lines with differential sensitivity to cisplatin. Anticancer Res. 2012;32:733–8.

    PubMed  Google Scholar 

  28. Zhang Y, Wang Z, Yu J, Shi J, Wang C, Fu W, Chen Z, Yang J. Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer. Cancer Lett. 2012;322:70–7.

    Article  PubMed  CAS  Google Scholar 

  29. Bryan RT. Bladder cancer and cancer stem cells: basic science and implications for therapy. ScientificWorldJournal. 2011;11:1187–94.

    Article  PubMed  CAS  Google Scholar 

  30. Huang P, Chen J, Wang L, Na Y, Kaku H, Ueki H, Sasaki K, Yamaguchi K, Zhang K, Saika T, Nasu Y, Watanabe M, Kumon H. Implications of transcriptional factor, OCT-4, in human bladder malignancy and tumor recurrence. Med Oncol. 2012;29:829–34.

    Article  PubMed  CAS  Google Scholar 

  31. Lin F, Lin P, Zhao D, Chen Y, Xiao L, Qin W, Li D, Chen H, Zhao B, Zou H, Zheng X, Yu X. Sox2 targets cyclinE, p27 and survivin to regulate androgen-independent human prostate cancer cell proliferation and apoptosis. Cell Prolif. 2012;45:207–16.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang J, Chang DY, Mercado-Uribe I, Liu J. Sex-determining region Y-box 2 expression predicts poor prognosis in human ovarian carcinoma. Hum Pathol. 2012;43:1405–12.

    Article  PubMed  CAS  Google Scholar 

  33. Sholl LM, Long KB, Hornick JL. Sox2 expression in pulmonary non-small cell and neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol. 2010;18:55–61.

    Article  PubMed  CAS  Google Scholar 

  34. Wang Q, He W, Lu C, Wang Z, Wang J, Giercksky KE, Nesland JM, Suo Z. Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer Res. 2009;29:1233–41.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Science and Technology Development Foundation of Wuxi, China (CSE01N1108), Youth Foundation of Jiangsu Health Department, China (Q201207), Key Program of Hospital Management Center, China (YGZ1105). Foundation of Nanjing Medical University, China (njmu034). We thank Dr. Yuhong Xia (Department of Pathology, Affiliated Wuxi people’s hospital, Nanjing Medical University) for immunohistochemical analysis.

Conflict of interest

No conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoqun Xu.

Additional information

Jun Ruan, Bingbing Wei, Zhuoqun Xu and Shudong Yang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Immunofluorescence staining of Sox2 in rat astrocytes. Sox2 showed positive nuclear staining in rat astrocytes (TIFF 3055 kb)

Supplementary Fig. 2

Immunohistochemical staining of Ki-67 in human bladder cancer. (a) Ki-67 showed negative staining in bladder cancer tissues, (b) showed low expression, and (c) showed high expression (TIFF 2566 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, J., Wei, B., Xu, Z. et al. Predictive value of Sox2 expression in transurethral resection specimens in patients with T1 bladder cancer. Med Oncol 30, 445 (2013). https://doi.org/10.1007/s12032-012-0445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-012-0445-z

Keywords

Navigation