Skip to main content
Log in

Prognostic significance of epigenetic inactivation of p16, p15, MGMT and DAPK genes in follicular lymphoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

In this study, methylation-specific polymerase chain reaction was used to investigate the role and potential prognostic significance of the methylation status of p16, p15, MGMT and DAPK genes in 32 specimens of follicular lymphoma (FL). Hypermethylation of p15 gene was associated with lower hemoglobin level (P = 0.020) and MGMT/DAPK comethylation with relapsed disease (P = 0.018). Among all patients with FL, there was no significant difference in the overall survival between those with hypermethylated and unmethylated of any examined genes. Therefore, we analyzed methylation in the different groups according to FL International Prognostic Index (FLIPI) and tumor grade. In the high-risk group, patients with hypermethylated p16 gene had significant lower overall survival than those with unmethylated p16 (P = 0.006) and trend toward shorter failure-free survival (P = 0.068). In the same risk group, there was a trend toward longer overall survival for patients with hypermethylated MGMT gene, compared to those with unmethylated MGMT gene (P = 0.066). p15 methylation had impact on shorter overall survival in grade I group of patients (P = 0.013), and DAPK methylation tended to have impact on shorter failure-free survival in the whole examined group (P = 0.079). Our results suggest that promoter methylation of p16 and MGMT genes could have prognostic value when used in combination with the FLIPI and p15 methylation in combination with tumor grade. Concurrent methylation of MGMT and DAPK genes could be the marker of tumor chemoresistance and disease recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphoma: clinical features of the major histologic subtypes. J Clin Oncol. 1998;16:2780–95.

    PubMed  CAS  Google Scholar 

  2. Fisher RI, LeBlanc M, Press OW, Maloney DG, Unger JM, Miller TP. ew treatment options have changed the survival of patients with follicular lymphoma. J Clin Oncol. 2005;23:8447–52.

    Article  PubMed  CAS  Google Scholar 

  3. Solal-Celigny P, Roy P, Colombat P, White J, Armitage JO, Arranz-Saes R, Au WJ, Bellei M, Brice P, Cabbalero D, Coiffier B, Conde-Garcia E, Doyen C, Federico M, Fisher RI, Garcia-Conde JF, Guglielmi C, Hagenbeek A, Haioun C, LeBlanc M, Lister AT, Lopez-Guillermo A, McLaughlin P, Milpied N, Morel P, Mounier N, Proctor SJ, Rohatiner A, Smith P, Soubeyran P, Tilly H, Vitolo U, Zinzani PL, Zucca E, Montserrat E. Follicular lymphoma international prognostic index. Blood. 2004;104:1258–65.

    Article  PubMed  CAS  Google Scholar 

  4. Sehn LH, Fenske TS, Laport GG. Follicular lymphoma: prognostic factors, conventional therapies, and hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18:S82–91.

    Article  PubMed  Google Scholar 

  5. Tsujimoto Y, Cossman J, Jaffe E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science. 1985;228:1440–3.

    Article  PubMed  CAS  Google Scholar 

  6. Bende RJ, Smit LA, van Noesel CJ. Molecular pathways in follicular lymphoma. Leukemia. 2007;21:18–29.

    Article  PubMed  CAS  Google Scholar 

  7. Esteller M. Profiling aberrant DNA methylation in hematologic neoplasms: a view from the top of the iceberg. Clin Immunol. 2003;109:80–8.

    Article  PubMed  CAS  Google Scholar 

  8. Rossi D, Capello D, Gloghini A, Franceschetti S, Paulli M, Bhatia K, Saglio G, Vitolo U, Pileri SA, Esteller M, Carbone A, Gaidano G. Abberant promoter methylation of multiple genes throughout the clinico-pathologic spectrum of B-cell neoplasia. Haematologica. 2004;89:154–64.

    PubMed  CAS  Google Scholar 

  9. Toyota M, Issa JP. The role of DNA hypermethylation in human neoplasia. Electrophoresis. 2000;21:329–33.

    Article  PubMed  CAS  Google Scholar 

  10. Martinez-Delgado B, Robledo M, Arranz E, Osorio A, Garcia MJ, Echezarreta G, Rivas C, Benitez J. Hypermethylation of p15/ink4b/MTS2 gene is differentially implicated among non-Hodgkin’s lymphoma. Leukemia. 1998;12:937–41.

    Article  PubMed  CAS  Google Scholar 

  11. Villuendas R, Sanchez-Beato M, Koh JC, Saez AI, Martinez-Delgado B, Garcia JF, Mateo MS, Sanchez-Verde L, Benitez J, Martinez P, Piris MA. Loss of p16/INK4A protein expression in non-Hodgkin’s lymphomas is a frequent finding associated with tumor progression. Am J Pathol. 1998;153:887–97.

    Article  PubMed  CAS  Google Scholar 

  12. Baur AS, Shaw P, Burri N, Delacrétaz F, Bosman FT, Chaubert P. Frequent methylation silencing of p15 INK4b (MTS2) and p16 INK4a (MTS1) in B-cell and T-cell lymphomas. Blood. 1999;94:1773–81.

    PubMed  CAS  Google Scholar 

  13. Chim CS, Wong KY, Loong F, Lam WW, Srivastava G. Frequent epigenetic inactivation of Rb1 in addition to p15 and p16 in mantle cell and follicular lymphoma. Hum Pathol. 2007;38:1849–57.

    Article  PubMed  CAS  Google Scholar 

  14. Voso MT, Gumiero D, D’Alo’ F, Guidi F, Mansueto G, Di Febo AL, Massini G, Martini M, Larocca LM, Hohaus S, Leone G. DAP-kinase hypermethylation in the bone marrow of patients with follicular lymphoma. Haematologica. 2006;91:1252–6.

    PubMed  CAS  Google Scholar 

  15. Guo J, Burger M, Nimmrich I, Maier S, Becker E, Genc B, Duff D, Rahmatpanah F, Chitma-Matsiga R, Shi H, Berlin K, Huang THM, Caldwell CW. Differential DNA methylation of gene promoters in small B-cell lymphomas. Am J Clin Pathol. 2005;124:430–9.

    Article  PubMed  CAS  Google Scholar 

  16. Bennett LB, Schnabel JL, Kelchen JM, Taylor KH, Guo J, Arthur GL, Papageorgio CN, Shi H, Caldwell CW. DNA hypermethylation accompanied by transcriptional repression in follicular lymphoma. Genes Chromosomes Cancer. 2009;48:828–41.

    Article  PubMed  CAS  Google Scholar 

  17. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.

    Article  PubMed  CAS  Google Scholar 

  18. Pegg AE. Repair of O(6)-alkylguanine by alkyltransferases. Mutat Res. 2000;462:83–100.

    Article  PubMed  CAS  Google Scholar 

  19. Cohen O, Kimchi A. DAP-kinase: from functional gene cloning to establishment of its role in apoptosis and cancer. Cell Death Differ. 2001;8:6–15.

    Article  PubMed  CAS  Google Scholar 

  20. Ng MH. Death associated protein kinase: from regulation of apoptosis to tumor suppressive function and B cell malignancies. Apoptosis. 2002;7:261–70.

    Article  PubMed  CAS  Google Scholar 

  21. Radojkovic M, Ristic S, Colovic M, Cemerikic-Martinovic V, Radojkovic D, Krtolica K. Molecular characteristics and prognostic significance of Bcl2/IgH gene rearrangement in Serbian follicular lymphoma patients. Neoplasma. 2008;55:421–7.

    PubMed  CAS  Google Scholar 

  22. Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, Lister TA, Vose J, Grillo-Lopez A, Hagenbeek A, Cabanillas F, Klippensten D, Hiddemann W, Castellino R, Harris NL, Armitage JO, Carter W, Hoppe R, Canellos G. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. J Clin Oncol. 1999;17:1244–53.

    PubMed  CAS  Google Scholar 

  23. Krtolica K, Krajnović M, Ušaj-Knežević S, Babić D, Jovanović D, Dimitrijević B. Comethylation of p16 and MGMT genes in colorectal carcinoma: correlation with clinicopathological features and prognostic value. World J Gastroenterol. 2007;13:1187–94.

    PubMed  CAS  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning. A laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Pres; 1989.

    Google Scholar 

  25. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996;93:9821–6.

    Article  PubMed  CAS  Google Scholar 

  26. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999;59:793–7.

    PubMed  CAS  Google Scholar 

  27. Katzenellenbogen RA, Baylin SB, Herman JG. Hypermethylation of the DAP-kinase CpG island is a common alteration in B-cell malignancies. Blood. 1999;93:4347–53.

    PubMed  CAS  Google Scholar 

  28. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995;55:4525–30.

    PubMed  CAS  Google Scholar 

  29. Garcia MJ, Martinez-Delgado B, Cebrian A, Martinez A, Benitez J, Rivas C. Different incidence and pattern of p15INK4b and p16INK4a promoter region hypermethylation in Hodgkin’s lymphoma and CD30-positive non-Hodgkin lymphomas. Am J Pathol. 2002;161:1007–13.

    Article  PubMed  CAS  Google Scholar 

  30. Wang J, Lee JJ, Wang L, Liu DD, Lu C, Fan YH, Kong WK, Mao L. Value of p16INK4a and RASSF1A promoter hypermethylation in prognosis of patients with resectable non-small cell lung cancer. Clin Cancer Res. 2004;10:6119–25.

    Article  PubMed  CAS  Google Scholar 

  31. Shiozawa E, Takimoto M, Makino R, Adachi D, Saito B, Yamochi-Oniyuka T, Yamochi T, Shimozuma J, Maeda T, Kohno Y, Kawakami K, Nakamaki K, Tomoyasu S, Shiokawa A, Ota H. Hypermethylation of CpG islands in p16 as a prognostic factor for diffuse large B-cell lymphoma in a high-risk group. Leuk Res. 2006;30:859–67.

    Article  PubMed  CAS  Google Scholar 

  32. Amara K, Trimeche M, Ziadi S, Laatiri A, Hachana M, Korbi S. Prognostic significance of aberrant promoter hypermethylation of CpG islands in patients with diffuse large B-cell lymphomas. Ann Oncol. 2008;19:1774–86.

    Article  PubMed  CAS  Google Scholar 

  33. Lee M, Han WS, Kim OK, Sung SH, Cho MS, Lee SN, Koo H. Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol Res Pract. 2006;202:415–24.

    Article  PubMed  CAS  Google Scholar 

  34. Sancez-Beato M, Saez AI, Navas IC. Overall survival in aggressive B-cell lymphomas is dependent on the accumulation of alterations in p53, p16, and p27. Am J Pathol. 2001;159:205–13.

    Article  Google Scholar 

  35. Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB. Distinct patterns of inactivation of p15INK4B and p16INKA characterize the major types oh hematological malignancies. Cancer Res. 1997;57:837–41.

    PubMed  CAS  Google Scholar 

  36. Kraguljac N, Krajnović M, Dimitrijević B, Mihaljević B, Gotić M, Krtolica K. Frequency of aberrant promoter methylation of p15INK4B and O6-methylguanine-DNA methyltransferase genes in B-cell non-Hodgkin lymphoma: a pilot study. Arch Biol Sci. 2010;62:211–21.

    Article  Google Scholar 

  37. Kraguljac KN, Krajnović M, Bogdanović A, Suvajdžić N, Jovanović J, Dimitrijević B, Čolović M, Krtolica K. Concomitant aberrant methylation of p15 and MGMT genes in acute myeloid leukemia: association with a particular immunophenotype of blast cells. Med Oncol. 2012;29:3547–56.

    Article  Google Scholar 

  38. Wemmert S, Bettscheider M, Alt S, Ketter R, Kammers K, Feiden W, Steudel WI, Rahnenführer J, Urbschat S. p15 promoter methylation—a novel prognostic marker in glioblastoma patients. Int J Oncol. 2009;34:1743–8.

    PubMed  CAS  Google Scholar 

  39. Deneberg S, Grovdal M, Karimi M, Jansson M, Nahi H, Corbaciogly A, Gaidzik V, Dohner K, Paul C, Ekstrom TJ, Hellstrom-Lindberg E, Lehmann S. Gene—specific and global methylation patterns predict outcome in patients with acute myeloid leukemia. Leukemia. 2010;24:932–41.

    Article  PubMed  CAS  Google Scholar 

  40. Kim M, Oh B, Kim SY, Park HK, Hwang SM, Kim TY, She CJ, Yang I, Yoon SS, Yoon JH, Lee DS. p15INK4b methylation correlates with thrombocytopenia, blast percentage, and survival in myelodysplastic syndrome in a dose dependent manner: quantitation using pyrosequencing study. Leuk Res. 2010;34:718–22.

    Article  PubMed  CAS  Google Scholar 

  41. Elenitoba-Johnson KSJ, Gascoyne RD, Lim MS, Chhanabai M, Jaffe ES, Raffeld M. Homozygous deletions at chromosome 9p21 involving p16 and p15 are associated with histologic progression in follicle center lymphoma. Blood. 1998;91:4677–85.

    PubMed  CAS  Google Scholar 

  42. Esteller M, Herman JG. Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene. 2004;23:1–8.

    Article  PubMed  CAS  Google Scholar 

  43. Esteller M, Gaidano G, Goodman SN, Zagonel V, Capello D, Botto B, Rossi D, Gloghini A, Vitolo U, Carbone A, Baylin SB, Herman JG. Hypermethylation of the DNA repair gene O6-methylguanine DNA methyltransferase and survival of patients with diffuse large B-cell lymphoma. J Natl Cancer Inst. 2002;94:26–32.

    Article  PubMed  CAS  Google Scholar 

  44. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343:1350–4.

    Article  PubMed  CAS  Google Scholar 

  45. Tozawa T, Tamura G, Honda T, Nawata S, Kimura W, Makino N, Kawata S, Sugai T, Suto T, Motoyama T. Promoter hypermethylation of DAP-kinase is associated with poor survival in primary biliary tract carcinoma patients. Cancer Sci. 2004;95:736–40.

    Article  PubMed  CAS  Google Scholar 

  46. Sander CA, Yano T, Clark HM, Harris C, Longo DL, Jafe ES, Raffeld M. p53 mutations is associated with progression in follicular lymphomas. Blood. 1993;82:1994–2004.

    PubMed  CAS  Google Scholar 

  47. O’Shea D, O’Riain C, Taylor C, Waters R, Carlotti E, MacDougall F, Gribben J, Rosenwald A, Ott G, Rimsza LM, Smeland EB, Johnson N, Campo E, Greiner TC, Chan WC, Gascoyne RD, Wright G, Staudt LM, Lister A, Fitzgibbon J. The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood. 2008;112:3126–9.

    Article  PubMed  Google Scholar 

  48. Jaffe E, Harris NL, Stein H, Vardiman JW. Pathology and Genetics of Tumours of Haematopoietics and Lymphoid Tissues. Lyon: IARC Press; 2001.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant 173049 from the Ministry of Education, Science and Technological Development of the Republic of Serbia.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Krajnović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajnović, M., Radojković, M., Davidović, R. et al. Prognostic significance of epigenetic inactivation of p16, p15, MGMT and DAPK genes in follicular lymphoma. Med Oncol 30, 441 (2013). https://doi.org/10.1007/s12032-012-0441-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-012-0441-3

Keywords

Navigation