Skip to main content

Advertisement

Log in

Expression and prognostic significance of a new tumor metastasis suppressor gene LASS2 in human bladder carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The LASS2 gene has been identified as a new tumor metastasis suppressor gene and has been seen to correlate with the degree of invasion and recurrence in carcinomas of prostate, breast, liver, ovarian, and pancreas. However, expression and prognostic significance of LASS2 in human bladder carcinoma are largely unknown. In this study, the protein expression of LASS2 in 80 patients with different stages was detected by immunohistochemical staining. The prognostic value of LASS2 in bladder cancers can also be assessed by a long-term follow-up investigation. The mRNA expression level of the LASS2 gene was examined using real-time quantitative PCR (qPCR) in human bladder carcinoma and paired non-tumor bladder tissues, which were obtained from 30 patients who underwent total cystectomy. We found that patients with LASS2-negative bladder cancer were linked to poor clinical prognosis. The expression of LASS2 mRNA was significantly correlated with clinical stage (P < 0.001), depth of tumor invasion (P < 0.001), and recurrence (P < 0.001). Thus, LASS2 expression may be correlated with the development and progression of human bladder carcinoma and may be a prognostic indicator for this carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hisataki T, Miyao N, Masumori N, Takahashi A, Sasai M, et al. Risk factors for the development of bladder cancer after upper tract urothelial cancer. Urology. 2000;55:663–7.

    Article  PubMed  CAS  Google Scholar 

  2. Fidler IJ. Critical factors in the biology of human cancer metastasis. Am Surg. 1995;61:1065–6.

    PubMed  CAS  Google Scholar 

  3. Saffar H, Sanii S, Heshmat R, Haghpanah V, Larijani B, et al. Expression of galectin-3, nm-23, and cyclooxygenase-2 could potentially discriminate between benign and malignant pheochromocytoma. Am J Clin Pathol. 2011;135:454–60.

    Article  PubMed  CAS  Google Scholar 

  4. Park HR, Kim SH, Lee SY, Sung JM, Park AR, et al. Nuclear localization of Nm23-H1 in head and neck squamous cell carcinoma is associated with radiation resistance. Cancer. 2011;117:1864–73.

    Article  PubMed  CAS  Google Scholar 

  5. Zhang C, Lv F, Zhou L, Li X, Wu XX, et al. Effect of verapamil on the expression of EGFR and NM23 in A549 human lung cancer cells. Anticancer Res. 2009;29:27–32.

    PubMed  Google Scholar 

  6. Jiang WX, Song BG, Wang PJ. Expression of nm23, KAI1 and spiral computed tomography findings in primary gallbladder carcinoma. Chin Med J (Engl). 2009;122:2666–8.

    Google Scholar 

  7. Wu CY, Yan J, Yang YF, Xiao FJ, Li QF, et al. Overexpression of KAI1 induces autophagy and increases MiaPaCa-2 cell survival through the phosphorylation of extracellular signal-regulated kinases. Biochem Biophys Res Commun. 2011;404:802–8.

    Article  PubMed  CAS  Google Scholar 

  8. Joshi B, Li L, Nabi IR. A role for KAI1 in promotion of cell proliferation and mammary gland hyperplasia by the gp78 ubiquitin ligase. J Biol Chem. 2010;285:8830–9.

    Article  PubMed  CAS  Google Scholar 

  9. Cao GL, Chu MX, Fang L, Di R, Feng T, et al. Analysis on DNA sequence of KiSS-1 gene and its association with litter size in goats. Mol Biol Rep. 2010;37:3921–9.

    Article  PubMed  CAS  Google Scholar 

  10. Hiney JK, Srivastava VK, Les Dees W. Insulin-like growth factor-1 stimulation of hypothalamic KiSS-1 gene expression is mediated by Akt: effect of alcohol. Neuroscience. 2010;166:625–32.

    Article  PubMed  CAS  Google Scholar 

  11. Lee KH, Kim JR. Kiss-1 suppresses MMP-9 expression by activating p38 MAP kinase in human stomach cancer. Oncol Res. 2009;18:107–16.

    Article  PubMed  CAS  Google Scholar 

  12. Shoji I, Hirose T, Mori N, Hiraishi K, Kato I, et al. Expression of kisspeptins and kisspeptin receptor in the kidney of chronic renal failure rats. Peptides. 2010;31:1920–5.

    Article  PubMed  CAS  Google Scholar 

  13. Nagji AS, Liu Y, Stelow EB, Stukenborg GJ, Jones DR. BRMS1 transcriptional repression correlates with CpG island methylation and advanced pathological stage in non-small cell lung cancer. J Pathol. 2010;221:229–37.

    Article  PubMed  CAS  Google Scholar 

  14. Guo X, Li X, Li F, Feng S, Pan Z, et al. Expression of gene BRMS1 and CD44v6 protein in supraglottic laryngeal carcinoma and its clinical significance. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2009;23:249–53.

    PubMed  Google Scholar 

  15. Li J, Cheng Y, Tai D, Martinka M, Welch DR, et al. Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis. Oncogene. 2011;30:896–906.

    Article  PubMed  Google Scholar 

  16. Metge BJ, Liu S, Riker AI, Fodstad O, Samant RS, et al. Elevated osteopontin levels in metastatic melanoma correlate with epigenetic silencing of breast cancer metastasis suppressor 1. Oncology. 2010;78:75–86.

    Article  PubMed  CAS  Google Scholar 

  17. Rivera J, Megias D, Navas C, Bravo J. Identification of essential sequences for cellular localization in BRMS1 metastasis suppressor. PLoS One. 2009;4:e6433.

    Article  PubMed  Google Scholar 

  18. Zhao XL, Wang P. [Expression of SATB1 and BRMS1 in ovarian serous adenocarcinoma and its relationship with clinieopathological features]. Sichuan Da Xue Xue Bao Yi Xue Ban 2011;42:82–85, 105.

    Google Scholar 

  19. Frolova N, Edmonds MD, Bodenstine TM, Seitz R, Johnson MR, et al. A shift from nuclear to cytoplasmic breast cancer metastasis suppressor 1 expression is associated with highly proliferative estrogen receptor-negative breast cancers. Tumour Biol. 2009;30:148–59.

    Article  PubMed  CAS  Google Scholar 

  20. Akakura S, Nochajski P, Gao L, Sotomayor P, Matsui S, et al. Rb-dependent cellular senescence, multinucleation and susceptibility to oncogenic transformation through PKC scaffolding by SSeCKS/AKAP12. Cell Cycle. 2010;9:4656–65.

    Article  PubMed  CAS  Google Scholar 

  21. Zhou Z, Tao T, Ji Y, Yang H, Wang Y, et al. SSeCKS promotes tumor necrosis factor-alpha autocrine via activating p38 and JNK pathways in Schwann cells. Cell Mol Neurobiol. 2010;30:701–7.

    Article  PubMed  Google Scholar 

  22. Su B, Bu Y, Engelberg D, Gelman IH. SSeCKS/Gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a protein kinase C-Raf/MEK/ERK pathway. J Biol Chem. 2010;285:4578–86.

    Article  PubMed  CAS  Google Scholar 

  23. Zan L, Wu H, Jiang J, Zhao S, Song Y, et al. Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema. Neurochem Int. 2011;58:872–9

    Article  PubMed  CAS  Google Scholar 

  24. Moon HG, Jeong SH, Ju YT, Jeong CY, Lee JS, et al. Up-regulation of RhoGDI2 in human breast cancer and its prognostic implications. Cancer Res Treat. 2010;42:151–6.

    Article  PubMed  Google Scholar 

  25. Zheng Z, Li J, He X, Chen X, Yu B, et al. Involvement of RhoGDI2 in the resistance of colon cancer cells to 5-fluorouracil. Hepatogastroenterology. 2010;57:1106–12.

    PubMed  CAS  Google Scholar 

  26. Niu H, Li H, Xu C, He P. Expression profile of RhoGDI2 in lung cancers and role of RhoGDI2 in lung cancer metastasis. Oncol Rep. 2010;24:465–71.

    PubMed  CAS  Google Scholar 

  27. Steeg PS, Ouatas T, Halverson D, Palmieri D, Salerno M. Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer. 2003;4:51–62.

    Article  PubMed  CAS  Google Scholar 

  28. Shevde LA, Welch DR. Metastasis suppressor pathways-an evolving paradigm. Cancer Lett. 2003;198:1–20.

    Article  PubMed  CAS  Google Scholar 

  29. Su J, You JF, Zhen J, Cui XL, Fang WG, et al. Overexpression of tumor metastasis suppressor gene 1 suppresses proliferation and invasion, but enhances apoptosis of human breast cancer cells MDA-MB-231 cells. Chin J Pathol. 2007;36:672–676. [in Chinese].

    Google Scholar 

  30. Su J, You JF, Zhen J, Cui XL, Fang WG, et al. Studies of tumor metastasis suppressor gene TMSG-1 inhibited proliferation and invasion of prostate cancer. Chin J Cancer 2008;30:404–407. [in Chinese].

    Google Scholar 

  31. Chen SH, Bubb MR, Yarmola EG, Zuo J, Jiang J, et al. Vacuolar H + -ATPase binding to microfilaments: regulation in response to phosphatidylinositol 3-kinase activity and detailed characterization of the actin-binding site in subunit B. J Biol Chem. 2004;279:7988–7998.

    Google Scholar 

  32. Schiffmann S, Sandner J, Birod K, Wobst I, Angioni C, et al. Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis. 2009;30:745–52.

    Article  PubMed  CAS  Google Scholar 

  33. Mesicek J, Lee H, Feldman T, Jiang X, Skobeleva A, et al. Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal. 2010;22:1300–7.

    Article  PubMed  CAS  Google Scholar 

  34. Xu XY, Pei F, You JF. TMSG-1 and its roles in tumor biology. Chin J Cancer. 2010;29:697–702.

    Google Scholar 

  35. Sobin LH, Wittekind C, editors. TNM classification of malignant tumors. 6th ed. New York: Wiley; 2002.

    Google Scholar 

  36. Axiotis CA, Monteagudo C, Merino MJ, LaPorte N, Neumann RD. Immunohistochemical detection of P-glycoprotein in endometrial adenocarcinoma. Am J Pathol. 1991;138:799–806.

    PubMed  CAS  Google Scholar 

  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(_Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  38. Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell. 1991;64:327–36.

    Article  PubMed  CAS  Google Scholar 

  39. Ichikawa T, Ichikawa Y, Isaacs JT. Genetic factors and metastatic potential of prostatic cancer. Cancer Surv. 1991;11:35–42.

    PubMed  CAS  Google Scholar 

  40. Tang N, You HY, Jin J. Small interfering RNA targeting LASS2 gene enhances invasion capacity of hepatocellular carcinoma cells. Tumor 2009; 29:399–403. [in Chinese].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Wang, J., Zuo, Y. et al. Expression and prognostic significance of a new tumor metastasis suppressor gene LASS2 in human bladder carcinoma. Med Oncol 29, 1921–1927 (2012). https://doi.org/10.1007/s12032-011-0026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-011-0026-6

Keywords

Navigation