Skip to main content
Log in

RNA Sequencing of Intraoperative Peritumoral Tissues Reveals Potential Pathways Involved in Glioma-Related Seizures

  • Research
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Tumor-induced changes in the peritumoral neocortex play a crucial role in generation of seizures. This study aimed to investigate the molecular mechanisms potentially involved in peritumoral epilepsy in low-grade gliomas (LGGs). Intraoperative peritumoral brain tissues resected from LGG patients with seizures (pGRS) or without seizures (pGNS) were used for RNA sequencing (RNA-seq). Comparative transcriptomics was performed to identify differentially expressed genes (DEGs) in pGRS compared to pGNS using deseq2 and edgeR packages (R). Gene set enrichment analysis (GSEA) using Gene Ontology terms and Kyoto Encyclopedia of Genes & Genomes (KEGG) pathways was performed using the clusterProfiler package (R). The expression of key genes was validated at the transcript and protein levels in the peritumoral region using real-time PCR and immunohistochemistry, respectively. A total of 1073 DEGs were identified in pGRS compared to pGNS, of which 559 genes were upregulated and 514 genes were downregulated (log2 fold-change ≥ 2, padj < 0.001). The DEGs in pGRS were highly enriched in the “Glutamatergic Synapse” and “Spliceosome” pathways, with increased expression of GRIN2A (NR2A), GRIN2B (NR2B), GRIA1 (GLUR1), GRIA3 (GLUR3), GRM5, CACNA1C, CACNA1A, and ITPR2. Moreover, increased immunoreactivity was observed for NR2A, NR2B, and GLUR1 proteins in the peritumoral tissues of GRS. These findings suggest that altered glutamatergic signaling and perturbed Ca2+ homeostasis may be potential causes of peritumoral epilepsy in gliomas. This explorative study identifies important genes/pathways that merit further characterization for their potential involvement in glioma-related seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The RNA sequencing data is available in the NCBI’s Sequence Read Archive repository (BioProject: PRJNA940602). Reviewer’s link: https://dataview.ncbi.nlm.nih.gov/object/PRJNA940602?reviewer=bdon1ns3l8937bbgtre5ki34ji.

References

  • Aronica E, Yankaya B, Jansen GH, Leenstra S, van Veelen CW, Gorter JA et al (2001) Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal tumours from patients with intractable epilepsy. Neuropathol Appl Neurobiol 27(3):223–237

    Article  CAS  PubMed  Google Scholar 

  • Beaumont A, Whittle IR (2000) The pathogenesis of tumour associated epilepsy. Acta Neurochir (wien) 142(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Beretta F, Bassani S, Binda E, Verpelli C, Bello L, Galli R et al (2009) The GluR2 subunit inhibits proliferation by inactivating Src-MAPK signalling and induces apoptosis by means of caspase 3/6-dependent activation in glioma cells. Eur J Neurosci 30(1):25–34

    Article  PubMed  Google Scholar 

  • Bernardino MR, Funayama C, Hamad AP, Machado H, Sakamoto A, Thome U et al (2016) Refractory epilepsy in children with brain tumors. The urgency of neurosurgery. Arq Neuropsiquiatr 74(12):1008–1013

    Article  PubMed  Google Scholar 

  • Buckingham SC, Robel S (2013) Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment. Neurochem Int 63(7):696–701

    Article  CAS  PubMed  Google Scholar 

  • Campbell SL, Buckingham SC, Sontheimer H (2012) Human glioma cells induce hyperexcitability in cortical networks. Epilepsia 53(8):1360–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaunsali L, Tewari BP, Gallucci A, Thompson EG, Savoia A, Feld N et al (2020) Glioma-induced peritumoral hyperexcitability in a pediatric glioma model. Physiol Rep 8(19):e14567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Judkins J, Thomas C, Wu M, Khoury L, Benjamin CG et al (2017) Mutant IDH1 and seizures in patients with glioma. Neurology 88(19):1805–1813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Sun Y, Niu X, Shang Y, Ruan J, Chen Z et al (2017) Gene expression profiling reveals U1 snRNA regulates cancer gene expression. Oncotarget 8(68):112867–112874

    Article  PubMed  PubMed Central  Google Scholar 

  • Coutinho V, Knopfel T (2002) Metabotropic glutamate receptors: electrical and chemical signaling properties. Neuroscientist 8:551–561

    Article  CAS  PubMed  Google Scholar 

  • Crupi R, Impellizzeri D, Cuzzocrea S (2019) Role of metabotropic glutamate receptors in neurological disorders. Front Mol Neurosci 12:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Groot JF, Piao Y, Lu L, Fuller GN, Yung WK (2008) Knockdown of GluR1 expression by RNA interference inhibits glioma proliferation. J Neurooncol 88(2):121–133

    Article  PubMed  Google Scholar 

  • De Groot M, Reijneveld JC, Aronica E, Heimans JJ (2012) Epilepsy in patients with a brain tumour: focal epilepsy requires focused treatment. Brain 135(Pt 4):1002–1016

    Article  PubMed  Google Scholar 

  • Dey S, Doddamani RS, Banerjee Dixit A, Tripathi M, Sharma MC, Chandra PS et al (2021) Altered spontaneous glutamatergic and gabaergic activity in the peritumoral cortex of low-grade gliomas presenting with history of seizures. Front Neurosci 15:689769

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Y, Wang X, Pan J, Ji M, Luo Z, Zhao P et al (2020) Aberrant expression of long non-coding RNAs (lncRNAs) is involved in brain glioma development. Arch Med Sci 16(1):177–188

    Article  CAS  PubMed  Google Scholar 

  • Dubey V, Dey S, Dixit AB, Tripathi M, Chandra PS, Banerjee J (2022) Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe and neocortex in a pilocarpine model of temporal lobe epilepsy. Exp Neurol 347:113916

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Li L, Xu X, Jiao Y, Du W (2017) Up-regulation of the long non-coding RNA RMRP contributes to glioma progression and promotes glioma cell proliferation and invasion. Arch Med Sci 13(6):1315–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feyissa AM, Carrano A, Wang X, Allen M, Ertekin-Taner N, Dickson DW et al (2021) Analysis of intraoperative human brain tissue transcriptome reveals putative risk genes and altered molecular pathways in glioma-related seizures. Epilepsy Res 173:106618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman LK, Pellegrini-Giampietro DE, Sperber EF, Bennett MV, Moshe SL, Zukin RS (1994) Kainate-induced status epilepticus alters glutamate and GABAA receptor gene expression in adult rat hippocampus: an in situ hybridization study. J Neurosci 14:2697–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Wang H, Cai S, Saadatzadeh MR, Hanenberg H, Pollok KE et al (2014) Phosphorylation of NMDA 2B at S1303 in human glioma peritumoral tissue: implications for glioma epileptogenesis. Neurosurg Focus 37(6):E17

    Article  PubMed  Google Scholar 

  • Grooms SY, Opitz T, Bennett MV, Zukin RS (2000) Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death. Proc Natl Acad Sci USA 97:3631–3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatcher A, Yu K, Meyer J, Aiba I, Deneen B, Noebels JL (2020) Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model. J Clin Invest 130(5):2286–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuser K, Nome CG, Pettersen KH, Abjørsbraten KS, Jensen V, Tang W et al (2018) Ca2+ signals in astrocytes facilitate spread of epileptiform activity. Cereb Cortex 28(11):4036–4048

    Article  PubMed  PubMed Central  Google Scholar 

  • Huberfeld G, Wittner L, Clemenceau S, Baulac M, Kaila K, Miles R et al (2007) Perturbed chloride homeostasis and GABAergic signaling in human temporal lobe epilepsy. J Neurosci 27(37):9866–9873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang Y, Moon J, Lee ST, Jun JS, Kim TJ, Lim JA et al (2018) Dysregulated long non-coding RNAs in the temporal lobe epilepsy mouse model. Seizure 58:110–119

    Article  PubMed  Google Scholar 

  • Kerkhof M, Vecht CJ (2013) Seizure characteristics and prognostic factors of gliomas. Epilepsia 54(Suppl 9):12–17

    Article  PubMed  Google Scholar 

  • Kiss T (2002) Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell 109(2):145–148

    Article  CAS  PubMed  Google Scholar 

  • Kudin AP, Kudina TA, Seyfried J, Vielhaber S, Beck H, Elger CE et al (2002) Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15(7):1105–1114

    Article  PubMed  Google Scholar 

  • Kumar K, Dixit AB, Tripathi M, Dubey V, Siraj F, Sharma MC et al (2022) Transcriptomic profiling of non-neoplastic epileptogenic cortical tissues resected from patients with dysembryoplastic neuroepithelial tumors. Funct Integr Genomics 22(5):905–917

    Article  CAS  PubMed  Google Scholar 

  • Kunz WS, Kudin AP, Vielhaber S, Blumcke I, Zuschratter W, Schramm J et al (2000) Mitochondrial complex I deficiency in the epileptic focus of patients with temporal lobe epilepsy. Ann Neurol 48(5):766–773

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Moon J, Lee ST, Jung KH, Park DK, Yoo JS et al (2015) Dysregulation of long non-coding RNAs in mouse models of localization-related epilepsy. Biochem Biophys Res Commun 462:433–440

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Kang JY, Seol MB, Kim HS, Woo JY, Lee JS et al (2006) Clinical features and epileptogenesis of dysembryoplastic neuroepithelial tumor. Childs Nerv Syst 22(12):1611–1618

    Article  PubMed  Google Scholar 

  • Li B, Chen N, Luo T, Otsu Y, Murphy TH, Raymond LA (2002) Differential regulation of synaptic and extrasynaptic NMDA receptors. Nat Neurosci 5:833–834

    Article  CAS  PubMed  Google Scholar 

  • Lipovich L, Dachet F, Cai J, Bagla S, Balan K, Jia H et al (2012) Activity-dependent human brain coding/noncoding gene regulatory networks. Genetics 192(3):1133–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopriore P, Gomes F, Montano V, Siciliano G, Mancuso M (2022) Mitochondrial epilepsy, a challenge for neurologists. Int J Mol Sci 23(21):13216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luyken C, Blümcke I, Fimmers R, Urbach H, Elger CE, Wiestler OD et al (2003) The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia 44(6):822–830

    Article  PubMed  Google Scholar 

  • Niesen CE, Xu J, Fan X, Li X, Wheeler CJ, Mamelak AN et al (2013) Transcriptomic profiling of human peritumoral neocortex tissues revealed genes possibly involved in tumor-induced epilepsy. PLoS ONE 8(2):e56077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noch E, Khalili K (2009) Molecular mechanisms of necrosis in glioblastoma: the role of glutamate excitotoxicity. Cancer Biol Ther 8(19):1791–1797

    Article  CAS  PubMed  Google Scholar 

  • Pallud J, Audureau E, Blonski M, Sanai N, Bauchet L, Fontaine D et al (2014) Epileptic seizures in diffuse low-grade gliomas in adults. Brain 137(Pt 2):449–462

    Article  PubMed  Google Scholar 

  • Pallud J, Capelle L, Huberfeld G (2013) Tumoral epileptogenicity: how does it happen? Epilepsia 54(Suppl 9):30–34

    Article  CAS  PubMed  Google Scholar 

  • Piao Y, Lu L, De Groot J (2009) AMPA receptors promote perivascular glioma invasion via beta1 integrin-dependent adhesion to the extracellular matrix. Neuro Oncol 11(3):260–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radin DP, Tsirka SE (2020) Interactions between tumor cells, neurons, and microglia in the glioma microenvironment. Int J Mol Sci 21(22):8476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert SM, Buckingham SC, Campbell SL, Robel S, Holt KT, Ogunrinu-Babarinde T et al (2015) SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma. Sci Transl Med 7(289):289ra86

    Article  PubMed  PubMed Central  Google Scholar 

  • Rudà R, Trevisan E, Soffietti R (2010) Epilepsy and brain tumors. Curr Opin Oncol 22(6):611–620

    Article  PubMed  Google Scholar 

  • Rutecki PA, Sayin U, Yang Y, Hadar E (2002) Determinants of ictal epileptiform patterns in the hippocampal slice. Epilepsia 43(Suppl 5):179–183

    Article  PubMed  Google Scholar 

  • Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E et al (2019) Non-Coding RNAs in Glioma Cancers (basel) 11(1):17

    CAS  Google Scholar 

  • Savaskan NE, Heckel A, Hahnen E, Engelhorn T, Doerfler A, Ganslandt O et al (2008) Small interfering RNA-mediated xCT silencing in gliomas inhibits neurodegeneration and alleviates brain edema. Nat Med 14:629–632

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Senner V, Kohling R, Puttmann-Cyrus S, Straub H, Paulus W, Speckmann EJ (2004) A new neurophysiological/neuropathological ex vivo model localizes the origin of glioma-associated epileptogenesis in the invasion area. Acta Neuropathol 107(1):1–7

    Article  PubMed  Google Scholar 

  • Shamji MF, Fric-Shamji EC, Benoit BG (2009) Brain tumors and epilepsy: pathophysiology of peritumoral changes. Neurosurg Rev 32(3):275–284

    Article  PubMed  Google Scholar 

  • Steinlein OK (2014) Calcium signaling and epilepsy. Cell Tissue Res 357:385–393

    Article  CAS  PubMed  Google Scholar 

  • Waldbaum S, Patel M (2010) Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res 88(1):23–45

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Huang TL, Chen X, Yu SX, Li W, Chen T et al (2021) Glioma-derived TSP2 promotes excitatory synapse formation and results in hyperexcitability in the peritumoral cortex of glioma. J Neuropathol Exp Neurol 80(2):137–149

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yang W, Wang Y, Aili Y, Wang Z, Wang Q et al (2022) Correlation of clinicopathological factors with brain tumor-related epilepsy in glioma. Dis Markers 2022:4918294

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z et al (2021) clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2(3):100141

    CAS  PubMed  Google Scholar 

  • Xia XR, Li WC, Yu ZT, Li J, Peng CY, Jin L et al (2020) Effects of small nucleolar RNA SNORD44 on the proliferation, apoptosis and invasion of glioma cells. Histochem Cell Biol 153:257–269

    Article  CAS  PubMed  Google Scholar 

  • Xu JH, Tang FR (2018) Voltage-dependent calcium channels, calcium binding proteins, and their interaction in the pathological process of epilepsy. Int J Mol Sci 19(9):2735

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu B, Ye MH, Lv SG, Wang QX, Wu MJ, Xiao B, Kang CS, Zhu XG (2017) SNORD47, a box C/D snoRNA, suppresses tumorigenesis in glioblastoma. Oncotarget 8(27):43953–43966

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao PS, Zheng SF, Wang F, Kang DZ, Lin YX (2018) Surgery guided with intraoperative electrocorticography in patients with low-grade glioma and refractory seizures. J Neurosurg 128(3):840–845

    Article  PubMed  Google Scholar 

  • Yuen TI, Morokoff AP, Bjorksten A, D’Abaco G, Paradiso L, Finch S et al (2012) Glutamate is associated with a higher risk of seizures in patients with gliomas. Neurology 79(9):883–889

    Article  CAS  PubMed  Google Scholar 

  • Zoccarato M, Nardetto L, Basile AM, Giometto B, Zagonel V, Lombardi G (2021) Seizures, edema, thrombosis, and hemorrhages: an update review on the medical management of gliomas. Front Oncol 11:617966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was generously supported by grants from the Office of the Principal Scientific Adviser to the Government of India vide sanction number: Prn.SA/Epilep/2017(G). The funder had no role in study design, data analysis, or decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

KK designed the research, performed the experiments, analyzed the data, and wrote the paper; VD and SSZ performed the experiments; MT performed pre-surgical evaluation of patients; FS and MCS analyzed histopathological data; PSC performed surgery and provided tissue samples; RD, ABD, and JB designed the research, analyzed the data, and wrote the paper.

Corresponding authors

Correspondence to Aparna Banerjee Dixit or Jyotirmoy Banerjee.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by institutional ethics committee (IEC) of All India Institute of Medical Sciences, New Delhi, and all the methods were performed in accordance with the relevant guidelines and regulations. A prior informed written consent was obtained from all subjects.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Dubey, V., Zaidi, S.S. et al. RNA Sequencing of Intraoperative Peritumoral Tissues Reveals Potential Pathways Involved in Glioma-Related Seizures. J Mol Neurosci 73, 437–447 (2023). https://doi.org/10.1007/s12031-023-02125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-023-02125-y

Keywords

Navigation