Skip to main content
Log in

Brivaracetam Modulates Short-Term Synaptic Activity and Low-Frequency Spontaneous Brain Activity by Delaying Synaptic Vesicle Recycling in Two Distinct Rodent Models of Epileptic Seizures

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Brivaracetam (BRV) is an anti-seizure drug for the treatment of focal and generalized epileptic seizures shown to augment short-term synaptic fatigue by slowing down synaptic vesicle recycling rates in control animals. In this study, we sought to investigate whether altered short-term synaptic activities could be a pathological hallmark during the interictal periods of epileptic seizures in two well-established rodent models, as well as to reveal BRV’s therapeutic roles in altered short-term synaptic activities and low-frequency band spontaneous brain hyperactivity in these models. In our study, the electrophysiological field excitatory post-synaptic potential (fEPSP) recordings were performed in rat hippocampal brain slices from the CA1 region by stimulation of the Schaffer collateral/commissural pathway with or without BRV (30 μM for 3 h) in control or epileptic seizure (induced by pilocarpine (PILO) or high potassium (h–K+)) models. Short-term synaptic activities were induced by 5, 10, 20, and 40-Hz stimulation sequences. The effects of BRV on pre-synaptic vesicle mobilization were visually assessed by staining the synaptic vesicles with FM1-43 dye followed by imaging with a two-photon microscope. In the fEPSP measurements, short-term synaptic fatigue was found in the control group, while short-term synaptic potentiation (STP) was detected in both PILO and h–K+ models. STP was decreased after the slices were treated with BRV (30 μM) for 3 h. BRV also exhibited its therapeutic benefits by decreasing abnormal peak power (frequency range of 8–13 Hz, 31% of variation for PILO model, 25% of variation for h–K+ model) and trough power (frequency range of 1–4 Hz, 66% of variation for PILO model, 49% of variation for h–K+ model), and FM1-43 stained synaptic vesicle mobility (64% of the variation for PILO model, 45% of the variation for h–K+ model) in these epileptic seizure models. To the best of our knowledge, this was the first report that BRV decreased the STP and abnormal low-frequency brain activities during the interictal phase of epileptic seizures by slowing down the mobilization of synaptic vesicles in two rodent models. These mechanistic findings would greatly advance our understanding of BRV’s pharmacological role in pathomechanisms of epileptic seizures and its treatment strategy optimization to avoid or minimize BRV-induced possible adverse side reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during analyses of the experimental results related to the current study are available from the corresponding author on reasonable request.

References

  • Abela E, Pawley AD, Tangwiriyasakul C, Yaakub SN, Chowdhury FA, Elwes RDC, Brunnhuber F, Richardson MP (2019) Slower alpha rhythm associates with poorer seizure control in epilepsy. Ann Clin Transl Neurol 6(2):333–343

    Article  PubMed  Google Scholar 

  • Abrahamsson T, Gustafsson B, Hanse E (2005) Synaptic fatigue at the naive perforant path-dentate granule cell synapse in the rat. J Physiol 569(Pt 3):737–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aich TK (2014) Absent posterior alpha rhythm: an indirect indicator of seizure disorder? Indian J Psychiatry 56(1):61–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Altrock WD, Tom Dieck S, Sokolov M, Meyer AC, Sigler A, Brakebusch C, Fässler R, Richter K, Boeckers TM, Potschka H, Brandt C, Löscher W, Grimberg D, Dresbach T, Hempelmann A, Hassan H, Balschun D, Frey JU, Brandstätter JH, Garner CC, Rosenmund C, Gundelfinger ED (2003) Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron 37(5):787–800

    Article  CAS  PubMed  Google Scholar 

  • Bartholome O, Van den Ackerveken P, Sánchez Gil J, de la Brassinne Bonardeaux O, Leprince P, Franzen R, Rogister B (2017) Puzzling out synaptic vesicle 2 family members functions. Front Mol Neurosci 10(148)

  • Betz WJ, Bewick GS (1992) Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction. Science 255(5041):200–203

    Article  CAS  PubMed  Google Scholar 

  • Budzinski KL, Allen RW, Fujimoto BS, Kensel-Hammes P, Belnap DM, Bajjalieh SM, Chiu DT (2009) Large structural change in isolated synaptic vesicles upon loading with neurotransmitter. Biophys J 97(9):2577–2584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burman RJ, Raimondo JV, Jefferys JG, Sen A, Akerman CJ (2020) The transition to status epilepticus: how the brain meets the demands of perpetual seizure activity. Seizure 75:137–144

    Article  PubMed  Google Scholar 

  • Curia G, Longo D, Biagini G, Jones RS, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172(2):143–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drake ME, Padamadan H, Newell SA (1998) Interictal quantitative EEG in epilepsy. Seizure 7(1):39–42

    Article  CAS  PubMed  Google Scholar 

  • Fabene PF, Merigo F, Galie M, Benati D, Bernardi P, Farace P, Nicolato E, Marzola P, Sbarbati A (2007) Pilocarpine-induced status epilepticus in rats involves ischemic and excitotoxic mechanisms. PLoS One 2(10):e1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friauf E, Fischer AU, Fuhr MF (2015) Synaptic plasticity in the auditory system: a review. Cell Tissue Res 361(1):177–213

    Article  PubMed  Google Scholar 

  • Fröhlich F, Bazhenov M, Iragui-Madoz V, Sejnowski TJ (2008) Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist 14(5):422–433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fu L, Liu K, Wake H, Teshigawara K, Yoshino T, Takahashi H, Mori S, Nishibori M (2017) Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci Rep 7(1):1179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujikawa DG (1996) The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res 725(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Gillard M, Fuks B, Leclercq K, Matagne A (2011) Binding characteristics of brivaracetam, a selective, high affinity SV2A ligand in rat, mouse and human brain: relationship to anti-convulsant properties. Eur J Pharmacol 664(1–3):36–44

    Article  CAS  PubMed  Google Scholar 

  • Harper CB, Small C, Davenport EC, Low DW, Smillie KJ, Martínez-Mármol R, Meunier FA, Cousin MA (2020) An epilepsy-associated SV2A mutation disrupts synaptotagmin-1 expression and activity-dependent trafficking. J Neurosci 40(23):4586–4595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henkel AW, Welzel O, Groemer TW, Tripal P, Rotter A, Kornhuber J (2010) Fluoxetine prevents stimulation-dependent fatigue of synaptic vesicle exocytosis in hippocampal neurons. J Neurochem 114(3):697–705

    Article  CAS  PubMed  Google Scholar 

  • Hennig M (2013) Theoretical models of synaptic short term plasticity. Front Comput Neurosci 7(45)

  • Kavalali ET (2015) The mechanisms and functions of spontaneous neurotransmitter release. Nat Rev Neurosci 16(1):5–16

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim JB, Suh SI (2019) Alteration of cerebello-thalamocortical spontaneous low-frequency oscillations in juvenile myoclonic epilepsy. Acta Neurol Scand 140(4):252–258

    Article  PubMed  Google Scholar 

  • Klein P, Diaz A, Gasalla T, Whitesides J (2018) A review of the pharmacology and clinical efficacy of brivaracetam. Clin Pharmacol 10:1–22

    PubMed  PubMed Central  Google Scholar 

  • Koch D, Spiwoks-Becker I, Sabanov V, Sinning A, Dugladze T, Stellmacher A, Ahuja R, Grimm J, Schüler S, Müller A, Angenstein F, Ahmed T, Diesler A, Moser M, Tom Dieck S, Spessert R, Boeckers TM, Fässler R, Hübner CA, Balschun D, Gloveli T, Kessels MM, Qualmann B (2011) Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. Embo j 30(24):4955–4969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerche H, Knake S, Rosenow F, Schulze-Bonhage A, Hellot S, Leunikava I, Schulz AL, Hopp P (2020) Brivaracetam substituting other antiepileptic treatments: results of a retrospective study in German epilepsy centers. Epilepsia Open 5(3):451–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xie XE, Xing H, Yuan X, Wang Y, Jin Y, Wang J, Vreugdenhil M, Zhao Y, Zhang R, Lu C (2019) The modulation of gamma oscillations by methamphetamine in rat hippocampal slices. Front Cell Neurosci 13(277)

  • Liu J-S, Li J-B, Gong X-W, Gong H-Q, Zhang P-M, Liang P-J, Lu Q-C (2013) Spatiotemporal dynamics of high-K+-induced epileptiform discharges in hippocampal slice and the effects of valproate. Neurosci Bull 29(1):28–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meehan AL, Yang X, McAdams BD, Yuan L, Rothman SM (2011) A new mechanism for antiepileptic drug action: vesicular entry may mediate the effects of levetiracetam. J Neurophysiol 106(3):1227–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michels L, Bucher K, Brem S, Halder P, Lüchinger R, Liechti M, Martin E, Jeanmonod D, Kröll J, Brandeis D (2011) Does greater low frequency EEG activity in normal immaturity and in children with epilepsy arise in the same neuronal network? Brain Topogr 24(1):78–89

    Article  CAS  PubMed  Google Scholar 

  • Mohammad H, Sekar S, Wei Z, Moien-Afshari F, Taghibiglou C (2019) Perampanel but not amantadine prevents behavioral alterations and epileptogenesis in pilocarpine rat model of status epilepticus. Mol Neurobiol 56(4):2508–2523

    Article  CAS  PubMed  Google Scholar 

  • Mumoli L, Palleria C, Gasparini S, Citraro R, Labate A, Ferlazzo E, Gambardella A, De Sarro G, Russo E (2015) Brivaracetam: review of its pharmacology and potential use as adjunctive therapy in patients with partial onset seizures. Drug Des Devel Ther 9:5719–5725

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niespodziany I, Andre VM, Leclere N, Hanon E, Ghisdal P, Wolff C (2015) Brivaracetam differentially affects voltage-gated sodium currents without impairing sustained repetitive firing in neurons. CNS Neurosci Ther 21(3):241–251

    Article  CAS  PubMed  Google Scholar 

  • Niquet J, Suchomelova L, Thompson K, Klitgaard H, Matagne A, Wasterlain C (2017) Acute and long-term effects of brivaracetam and brivaracetam-diazepam combinations in an experimental model of status epilepticus. Epilepsia 58(7):1199–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paschen E, Elgueta C, Heining K, Vieira DM, Kleis P, Orcinha C, Häussler U, Bartos M, Egert U, Janz P, Haas CA (2020) Hippocampal low-frequency stimulation prevents seizure generation in a mouse model of mesial temporal lobe epilepsy. Elife 9:e54518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Power KN, Gramstad A, Gilhus NE, Hufthammer KO, Engelsen BA (2018) Cognitive dysfunction after generalized tonic-clonic status epilepticus in adults. Acta Neurol Scand 137(4):417–424

    Article  CAS  PubMed  Google Scholar 

  • Pyrzowski J, Siemiński M, Sarnowska A, Jedrzejczak J, Nyka WM (2015) Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy. Sci Rep 5:16230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  • Reig R, Gallego R, Nowak LG, Sanchez-Vives MV (2005) Impact of cortical network activity on short-term synaptic depression. Cereb Cortex 16(5):688–695

    Article  PubMed  Google Scholar 

  • Sadri K, Khani M, Sadri I (2014) Role of central fatigue in resistance and endurance exercises: an emphasis on mechanisms and potential sites. Sportlogia 10(2):65–80

    Article  Google Scholar 

  • Sanon NT, Gagné J, Wolf DC, Aboulamer S, Bosoi CM, Simard A, Messiet E, Desgent S, Carmant L (2018) Favorable adverse effect profile of brivaracetam vs levetiracetam in a preclinical model. Epilepsy Behav 79:117–125

    Article  PubMed  Google Scholar 

  • Santiago-Rodríguez E, Harmony T, Cárdenas-Morales L, Hernández A, Fernández-Bouzas A (2008) Analysis of background EEG activity in patients with juvenile myoclonic epilepsy. Seizure 17(5):437–445

    Article  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    Article  CAS  PubMed  Google Scholar 

  • Schroeter ML, Schmiedel O, von Cramon DY (2004) Spontaneous low-frequency oscillations decline in the aging brain. J Cereb Blood Flow Metab 24(10):1183–1191

    Article  PubMed  Google Scholar 

  • Simons-Weidenmaier NS, Weber M, Plappert CF, Pilz PK, Schmid S (2006) Synaptic depression and short-term habituation are located in the sensory part of the mammalian startle pathway. BMC Neurosci 7:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith MD, Adams AC, Saunders GW, White HS, Wilcox KS (2007) Phenytoin- and carbamazepine-resistant spontaneous bursting in rat entorhinal cortex is blocked by retigabine in vitro. Epilepsy Res 74(2–3):97–106

    Article  CAS  PubMed  Google Scholar 

  • Smith SJ (2005) EEG in neurological conditions other than epilepsy: when does it help, what does it add? J Neurol Neurosurg Psychiatry 76(Suppl 2):ii8-12

    PubMed  PubMed Central  Google Scholar 

  • Stevens CF, Williams JH (2007) Discharge of the readily releasable pool with action potentials at hippocampal synapses. J Neurophysiol 98(6):3221–3229

    Article  PubMed  Google Scholar 

  • Thevenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41

    Article  CAS  PubMed  Google Scholar 

  • Upreti C, Otero R, Partida C, Skinner F, Thakker R, Pacheco LF, Zhou ZY, Maglakelidze G, Veliskova J, Velisek L, Romanovicz D, Jones T, Stanton PK, Garrido-Sanabria ER (2012) Altered neurotransmitter release, vesicle recycling and pre-synaptic structure in the pilocarpine model of temporal lobe epilepsy. Brain 135(Pt 3):869–885

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker MC (2018) Pathophysiology of status epilepticus. Neurosci Lett 667:84–91

    Article  CAS  PubMed  Google Scholar 

  • Wan QF, Zhou ZY, Thakur P, Vila A, Sherry DM, Janz R, Heidelberger R (2010) SV2 acts via pre-synaptic calcium to regulate neurotransmitter release. Neuron 66(6):884–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West PJ, Saunders GW, Billingsley P, Smith MD, White HS, Metcalf CS, Wilcox KS (2018) Recurrent epileptiform discharges in the medial entorhinal cortex of kainate-treated rats are differentially sensitive to anti-seizure drugs. Epilepsia 59(11):2035–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu A, Fujikawa DG (2002) Effects of AMPA-receptor and voltage-sensitive sodium channel blockade on high potassium-induced glutamate release and neuronal death in vivo. Brain Res 946(1):119–129

    Article  CAS  PubMed  Google Scholar 

  • Xing H, Xu S, Xie X, Wang Y, Lu C, Han X (2020) Levetiracetam induction of theta frequency oscillations in rodent hippocampus in vitro. Can J Physiol Pharmacol 98(10):725–732

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Worrell GA, Nelson C, Brinkmann B, He B (2012) Spectral and spatial shifts of post-ictal slow waves in temporal lobe seizures. Brain 135(Pt 10):3134–3143

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Bognar J Jr, He T, Mohammed M, Niespodziany I, Wolff C, Esguerra M, Rothman SM, Dubinsky JM (2015) Brivaracetam augments short-term depression and slows vesicle recycling. Epilepsia 56(12):1899–1909

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Bajjalieh SM (2008) Synaptic vesicle protein 2 binds adenine nucleotides. J Biol Chem 283(30):20628–20634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Nowack A, Kensel-Hammes P, Gardner RG, Bajjalieh SM (2010) Cotrafficking of SV2 and synaptotagmin at the synapse. J Neurosci 30(16):5569–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Q, Luo X, Li K, Wang S, Zhang R, Hong H, Huang P, Jiaerken Y, Xu X, Xu J, Wang C, Zhou J, Zhang M (2019) Distinct spontaneous brain activity patterns in different biologically-defined Alzheimer’s disease cognitive stage: a preliminary study. Front Aging Neurosci 11:350

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Gong B, Liu S, Fa M, Ninan I, Staniszewski A, Arancio O (2005) Synaptic fatigue is more pronounced in the APP/PS1 transgenic mouse model of alzheimers disease. Curr Alzheimer Res 2(2):137–140

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Li F, Li M, Hu D (2020) Anesthesia enhances spontaneous low-frequency oscillations in the brain. NeuroReport 31(5):394–398

    Article  PubMed  Google Scholar 

  • Zona C, Pieri M, Carunchio I, Curcio L, Klitgaard H, Margineanu DG (2010) Brivaracetam (ucb 34714) inhibits Na(+) current in rat cortical neurons in culture. Epilepsy Res 88(1):46–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The English text of a draft of this manuscript was edited by the editors from MedEditing LLC (www.medediting.com).

Funding

This research was supported by Basic and Frontier Technological Project in Henan Province 2015 (grant number: 152300410155), Key Scientific Research Project of Colleges and Universities in Henan Province (grant number: 17A320028), Joint Construction Project of Province and Ministry in Henan Province (grant number: SB201901074), and Henan Provincial Medical Science and Technology Breakthrough Plan Project (grant number: 201403136).

Author information

Authors and Affiliations

Authors

Contributions

H.X. and S.X. carried out the experiment. H.X. wrote the manuscript with support from S.Y. H.X., S.X. and Z.S. collected the data.X.H. helped supervise the project. H.X., X.H. and S.X. analyzed the original idea. X.H. supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiong Han.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 444 KB)

Supplementary file2 (DOCX 449 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Han, X., Xu, S. et al. Brivaracetam Modulates Short-Term Synaptic Activity and Low-Frequency Spontaneous Brain Activity by Delaying Synaptic Vesicle Recycling in Two Distinct Rodent Models of Epileptic Seizures. J Mol Neurosci 72, 1058–1074 (2022). https://doi.org/10.1007/s12031-022-01983-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-01983-2

Keywords

Navigation