Skip to main content
Log in

Does Greater Low Frequency EEG Activity in Normal Immaturity and in Children with Epilepsy Arise in the Same Neuronal Network?

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Greater low frequency power (<8 Hz) in the electroencephalogram (EEG) at rest is normal in the immature developing brain of children when compared to adults. Children with epilepsy also have greater low frequency interictal resting EEG activity. Whether these power elevations reflect brain immaturity due to a developmental lag or the underlying epileptic pathophysiology is unclear. The present study addresses this question by analyzing spectral EEG topographies and sources for normally developing children and children with epilepsy. We first compared the resting EEG of healthy children to that of healthy adults to isolate effects related to normal brain immaturity. Next, we compared the EEG from 10 children with generalized cryptogenic epilepsy to the EEG of 24 healthy children to isolate effects related to epilepsy. Spectral analysis revealed that global low (delta: 1–3 Hz, theta: 4–7 Hz), medium (alpha: 8–12 Hz) and high (beta: 13–25 Hz) frequency EEG activity was greater in children without epilepsy compared to adults, and even further elevated for children with epilepsy. Topographical and tomographic EEG analyses showed that normal immaturity corresponded to greater delta and theta activity at fronto-central scalp and brain regions, respectively. In contrast, the epilepsy-related activity elevations were predominantly in the alpha band at parieto-occipital electrodes and brain regions, respectively. We conclude that lower frequency activity can be a sign of normal brain immaturity or brain pathology depending on the specific topography and frequency of the oscillating neuronal network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BA:

Brodmann area

BOLD:

Blood oxygen level dependency

CE:

Cryptogenic epilepsy

EEG:

Electroencephalogram

ESM:

Ethosuximide

FLAIR:

Fluid attenuation inversion recovery

fMRI:

Functional magnetic resonance imaging

GMV:

Grey matter volume

HA:

Healthy adults

HC:

Healthy children

ICA:

Independent component analysis

ILAE:

International league against epilepsy

MEG:

Magnetoencephalography

MRI:

Magnetic resonance imaging

LEV:

Levetiracetam

LTG:

Lamotrigine

sLORETA:

Standardized low resolution brain electromagnetic tomography

TLE:

Temporal lobe epilepsy

OXZ:

Oxcarbazepine

VPA:

Valproic acid

References

  • Annegers JF, Rocca WA, Hauser WA (1996) Causes of epilepsy: contributions of the Rochester epidemiology project. Mayo Clin Proc 71:570–575

    Article  PubMed  CAS  Google Scholar 

  • Benninger C, Matthis P, Scheffner D (1984) EEG development of healthy boys and girls. Results of a longitudinal study. Electroencephalogr Clin Neurophysiol 57:1–12

    Article  PubMed  CAS  Google Scholar 

  • Benninger C, Matthis P, Scheffner D (1985) Spectral analysis of the EEG in children during the introduction of antiepileptic therapy with valproic acid. Neuropsychobiology 13:93–96

    Article  PubMed  CAS  Google Scholar 

  • Clarke AR, Barry RJ, Mccarthy R, Selikowitz M (2001) Age and sex effects in the EEG: development of the normal child. Clin Neurophysiol 112:806–814

    Article  PubMed  CAS  Google Scholar 

  • Clemens B (2004a) Abnormal quantitative EEG scores identify patients with complicated idiopathic generalised epilepsy. Seizure 13:366–374

    Article  PubMed  Google Scholar 

  • Clemens B (2004b) Pathological theta oscillations in idiopathic generalised epilepsy. Clin Neurophysiol 115:1436–1441

    Article  PubMed  Google Scholar 

  • Clemens B, Szigeti G, Barta Z (2000) EEG frequency profiles of idiopathic generalised epilepsy syndromes. Epilepsy Res 42:105–115

    Article  PubMed  CAS  Google Scholar 

  • Clemens B, Bessenyei M, Piros P, Toth M, Seress L, Kondakor I (2007a) Characteristic distribution of interictal brain electrical activity in idiopathic generalized epilepsy. Epilepsia 48:941–949

    Article  PubMed  Google Scholar 

  • Clemens B, Bessenyei M, Tóth M, Kondákor I (2007b) Valproate selectively reduces EEG activity in anterior parts of the cortex in patients with idiopathic generalized epilepsy. A low resolution electromagnetic tomography (LORETA) study. Epilepsy Res 75:186–191

    Article  Google Scholar 

  • Drake ME, Padamadan H, Newell SA (1998) Interictal quantitative EEG in epilepsy. Seizure 7:39–42

    Article  PubMed  CAS  Google Scholar 

  • ENGEL J Jr (2001) A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE task force on classification and terminology. Epilepsia 42:796–803

    Article  PubMed  Google Scholar 

  • Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU, Wenger KK, Fox MD, Snyder AZ, Raichle ME, Petersen SE (2007) A method for using blocked and event-related fMRI data to study “resting state” functional connectivity. Neuroimage 35:396–405

    Article  PubMed  Google Scholar 

  • Ferri R, Iliceto G, Carlucci V (1995) Topographic EEG mapping of 3/s spike-and-wave complexes during absence seizures. Ital J Neurol Sci 16:541–547

    Article  PubMed  CAS  Google Scholar 

  • Frei E, Gamma A, Pascual-Marqui R, Lehmann D, Hell D, Vollenweider FX (2001) Localization of MDMA-induced brain activity in healthy volunteers using low resolution brain electromagnetic tomography (LORETA). Hum Brain Mapp 14:152–165

    Article  PubMed  CAS  Google Scholar 

  • Frost JD Jr, Hrachovy RA, Glaze DG, Rettig GM (1995) Alpha rhythm slowing during initiation of carbamazepine therapy: implications for future cognitive performance. J Clin Neurophysiol 12:57–63

    PubMed  Google Scholar 

  • Gasser T, Verleger R, Bacher P, Sroka L (1988) Development of the EEG of school-age children and adolescents. I. Analysis of band power. Electroencephalogr Clin Neurophysiol 69:91–99

    Article  PubMed  CAS  Google Scholar 

  • Gelety TJ, Burgess RJ, Drake ME Jr, Ford CE, Brown ME (1985) Computerized spectral analysis of the interictal EEG in epilepsy. Clin Electroencephalogr 16:94–97

    PubMed  CAS  Google Scholar 

  • Gibbs F, Gibbs E, Lennox W (1943) Electroencephalographic classification of epileptic patients and control subjects. Arch Neurol Psychiatry 50:111–128

    Google Scholar 

  • Gloor P, Metrakos J, Metrakos K, Andermann E, van GELDER N (1982) Neurophysiological, genetic and biochemical nature of the epileptic diathesis. Electroencephalogr Clin Neurophysiol suppl 35:45–56

    PubMed  Google Scholar 

  • Guye M, Regis J, Tamura M, Wendling F, Mcgonigal A, Chauvel P, Bartolomei F (2006) The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129:1917–1928

    Article  PubMed  Google Scholar 

  • Hongou K, Konishi T, Naganuma Y, Murakami M, Yamatani M, Okada T (1993) Development of the background activity of EEG in children with epilepsy; comparison with normal children. No To Hattatsu 25:207–214

    PubMed  CAS  Google Scholar 

  • Jacobs J, Levan P, Moeller F, Boor R, Stephani U, Gotman J, Siniatchkin M (2009) Hemodynamic changes preceding the interictal EEG spike in patients with focal epilepsy investigated using simultaneous EEG–fMRI. Neuroimage 45:1220–1231

    Article  PubMed  Google Scholar 

  • Jeanmonod D, Schulman J, Ramirez R, Cancro R, Lanz M, Morel A, Magnin M, Siegemund M, Kronberg E, Ribary U, Llinas R (2003) Neuropsychiatric thalamocortical dysrhythmia: surgical implications. Neurosurg Clin N Am 14:251–265

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Jacobs J, Gotman J (2009) Detection of changes of high-frequency activity by statistical time–frequency analysis in epileptic spikes. Clin Neurophysiol 120:1070–1077

    Article  PubMed  Google Scholar 

  • Landolt HP, Retey JV, Tonz K, Gottselig JM, Khatami R, Buckelmuller I, Achermann P (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacology 29:1933–1939

    Article  PubMed  CAS  Google Scholar 

  • Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621

    Article  PubMed  CAS  Google Scholar 

  • Lin YY, Hsiao FJ, Chang KP, Wu ZA, Ho LT (2006) Bilateral oscillations for lateralized spikes in benign rolandic epilepsy. Epilepsy Res 69:45–52

    Article  PubMed  Google Scholar 

  • Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96:15222–15227

    Article  PubMed  CAS  Google Scholar 

  • Matousek M, Petersen I (1973) Automatic evaluation of EEG background activity by means of age-dependent EEG quotients. Electroencephalogr Clin Neurophysiol 35:603–612

    Article  PubMed  CAS  Google Scholar 

  • Matthis P, Scheffner D, Benninger C, Lipinski C, Stolzis L (1980) Changes in the background activity of the electroencephalogram according to age. Electroencephalogr Clin Neurophysiol 49:626–635

    Article  PubMed  CAS  Google Scholar 

  • Miyauchi T, Endo K, Yamaguchi T, Hagimoto H (1991) Computerized analysis of EEG background activity in epileptic patients. Epilepsia 32:870–881

    Article  PubMed  CAS  Google Scholar 

  • Moazami-Goudarzi M, Sarnthein J, Michels L, Moukhtieva R, Jeanmonod D (2008) Enhanced frontal low and high frequency power and synchronization in the resting EEG of parkinsonian patients. Neuroimage 41:985–997

    Article  PubMed  Google Scholar 

  • Moazami-Goudarzi M, Michels L, Weisz N, Jeanmonod D (2010) Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. BMC Neurosci 11:40

    Article  PubMed  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25

    Article  PubMed  Google Scholar 

  • Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University, Westdorp

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol Suppl 24(D):5–12

    Google Scholar 

  • Pataraia E, Feucht M, Lindinger G, Aull-Watschinger S, Baumgartner C (2008) Combined electroencephalography and magnetoencephalography of interictal spikes in benign rolandic epilepsy of childhood. Clin Neurophysiol 119:635–641

    Article  PubMed  Google Scholar 

  • Ray NJ, Jenkinson N, Kringelbach ML, Hansen PC, Pereira EA, Brittain JS, Holland P, Holliday IE, Owen S, Stein J, Aziz T (2009) Abnormal thalamocortical dynamics may be altered by deep brain stimulation: using magnetoencephalography to study phantom limb pain. J Clin Neurosci 16:32–36

    Article  PubMed  CAS  Google Scholar 

  • Robinson PA, Rennie CJ, Rowe DL, O’connor SC (2004) Estimation of multiscale neurophysiologic parameters by electroencephalographic means. Hum Brain Mapp 23:53–72

    Article  PubMed  CAS  Google Scholar 

  • Rodin E (1999) Decomposition and mapping of generalized spike-wave complexes. Clin Neurophysiol 110:1868–1875

    Article  PubMed  CAS  Google Scholar 

  • Rodin E, Cornellier D (1989) Source derivation recordings of generalized spike-wave complexes. Electroencephalogr Clin Neurophysiol 73:20–29

    Article  PubMed  CAS  Google Scholar 

  • Sakkalis V, Cassar T, Zervakis M, Camilleri KP, Fabri SG, Bigan C, Karakonstantaki E, Micheloyannis S (2008) Parametric and nonparametric EEG analysis for the evaluation of EEG activity in young children with controlled epilepsy. Comput Intell Neurosci 2008:462593 (15 pp). doi:10.1155/2008/462593

  • Salinsky MC, Binder LM, Oken BS, Storzbach D, Aron CR, Dodrill CB (2002) Effects of gabapentin and carbamazepine on the EEG and cognition in healthy volunteers. Epilepsia 43:482–490

    Article  PubMed  CAS  Google Scholar 

  • Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, Von Stein A (1998) Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci USA 95:7092–7096

    Article  PubMed  CAS  Google Scholar 

  • Sarnthein J, Morel A, Von Stein A, Jeanmonod D (2003) Thalamic theta field potentials and EEG: high thalamocortical coherence in patients with neurogenic pain, epilepsy and movement disorders. Thalamus Relat Syst 2:231–238

    Google Scholar 

  • Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129:55–64

    Article  PubMed  Google Scholar 

  • Serles W, Baumgartner C, Feichtinger M, Felber S, Feucht M, Podreka I, Prayer D, Trinka E (2003) Richtlinien für ein standardisiertes MRT-Protokoll für Patienten mit epileptischen Anfällen in Österreich. Mittbl der Österr Sektion der Int Liga gegen Epilep 3:2–13

    Google Scholar 

  • Sterman MB (1981) Power spectral analysis of EEG characteristics during sleep in epileptics. Epilepsia 22:95–106

    Article  PubMed  CAS  Google Scholar 

  • Stern J, Jeanmonod D, Sarnthein J (2006) Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage 31:721–731

    Article  PubMed  Google Scholar 

  • Strik WK, Fallgatter AJ, Brandeis D, Pascual-Marqui RD (1998) Three-dimensional tomography of event-related potentials during response inhibition: evidence for phasic frontal lobe activation. Electroencephalogr Clin Neurophysiol 108:406–413

    Article  PubMed  CAS  Google Scholar 

  • Supekar K, Uddin LQ, Prater K, Amin H, Greicius MD, Menon V (2010) Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52(1):290–301

    Article  PubMed  Google Scholar 

  • Tewes U, Rossmann P, Schallberger UH (2000) HAWIK-III Hamburg-Wechsler-Intelligenztest für Kinder [Wechsler intelligence scale for children (WISC-III; 1991)-German version], Bern

  • Tyvaert L, Levan P, Grova C, Dubeau F, Gotman J (2008) Effects of fluctuating physiological rhythms during prolonged EEG–fMRI studies. Clin Neurophysiol 119:2762–2774

    Article  PubMed  Google Scholar 

  • Van Gelder NM, Siatitsas I, Menini C, Gloor P (1983) Feline generalized penicillin epilepsy: changes of glutamic acid and taurine parallel the progressive increase in excitability of the cortex. Epilepsia 24:200–213

    Article  PubMed  Google Scholar 

  • Walton KD, Dubois M, Llinas RR (2010) Abnormal thalamocortical activity in patients with complex regional pain syndrome (CRPS) type I. Pain 150(1):41–51

    Article  PubMed  CAS  Google Scholar 

  • Whitford TJ, Rennie CJ, Grieve SM, Clark CR, Gordon E, Williams LM (2007) Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp 28:228–237

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the NCCR on Neural Plasticity and Repair, and by the University Research Priority Program on Integrative Human Physiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Michels.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

10548_2010_161_MOESM1_ESM.eps

Supplementary Fig. 1. The panel on the top shows the spectral power comparison for EEG epochs 1 s before and after the end of spiking activity (red curve) and for EEG epochs 3 s earlier and after the spike discharge (black curve). The bottom panel shows the statistical differences between the two spectral curves. (EPS 1241 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michels, L., Bucher, K., Brem, S. et al. Does Greater Low Frequency EEG Activity in Normal Immaturity and in Children with Epilepsy Arise in the Same Neuronal Network?. Brain Topogr 24, 78–89 (2011). https://doi.org/10.1007/s10548-010-0161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-010-0161-y

Keywords

Navigation