Skip to main content

Advertisement

Log in

Molecular Insights to the Wnt Signaling During Alzheimer’s Disorder: a Potential Target for Therapeutic Interventions

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In the adult brain, Wnt signaling is crucial for neurogenesis, and it also regulates neuronal development, neuronal maturation, neuronal differential, and proliferation. Impaired Wnt signaling pathways are associated with enhanced levels of amyloid-β, reduced β-catenin levels, and increased expression of GSK-3β enzyme, suggesting its direct association with the pathogenesis of Alzheimer’s disorder (AD). These findings are consolidated by reports where activation of Wnt signaling by genetic factors and pharmacological intervention has improved the cognitive functions in animals and restored neurogenesis in the adult brain. Various natural and synthetic molecules have been identified that modulate Wnt signaling in the adult brain and promote neurogenesis and alleviate behavioral dysfunction. These molecules include lithium, valproic acid, ethosuximide, selenomethionine, curcumin, andrographolide, xanthoceraside, huperzine A, pyridostigmine, ginkgolide-B, ricinine, cannabidiol, and resveratrol. These molecules are associated with the DKK1 and GSK-3β inhibition and β-catenin stabilization along with their effects on neurogenesis, neuronal proliferation, and differentiation in the hippocampus through modulation of Wnt signaling and thereby could prove beneficial in the management of AD pathogenesis. Although modulation of the Wnt signaling seems to suggest to be promising in the management of AD, unfortunately, most of the literature available for the association of Wnt signaling and AD pathogenesis is either from preclinical studies or post-mortem brain. Therefore, it will be interesting to understand the role of Wnt signaling in AD patients, and a rigorous investigation could provide us with a better understanding of AD pathogenesis and the identification of novel targets for therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Abbreviations

Wnt:

Wingless-type integration site

AD:

Alzheimer’s disorder

Wg:

Wingless

Int:

Integration

PCP:

Planar cell polarity

CNS:

Central nervous system

βA:

β-Amyloid

NFT:

Neurofibrillary tangles

GSK-3 β:

Glycogen synthase kinase-3 beta

DKK:

Dickkopf

Fzz:

Frizzled

LRP:

Lipoprotein receptor-related protein

Wnt-Fzz-LRP:

Wnt receptor complex

APC:

Adenomatous polyposis coli gene

CK-1α:

Casein kinase-1- alpha

Dvl:

Dishevelled

TCF:

T cell-specific transcription factor

LEF:

Lymphoid enhancer-binding factor

JNK:

Jun N-terminal kinase

DAG:

Diacylglycerol

IP3:

Inositol triphosphate

PKC:

Protein kinase C

NF-AT:

Nuclear factor of activated T cells

PLC :

Phospholipase C

ROCK:

Rho-associated kinase

Sfrp:

Secreted frizzled-related protein

Krm-2:

Kremen-2

IGFBP-4:

Insulin-like growth factor-binding protein-4

WIF-1 :

Wnt-inhibitory factor-1

BBB :

Blood–brain barrier

Glut1:

Glucose transporter 1

PSEN:

Presenilin

NeuroD1:

Neuronal differentiation 1

AHPs:

Adult hippocampal progenitors

CaMKII:

Calmodulin-dependent protein kinase I

TREM2:

Triggering receptor expressed on myeloid cells 2

WASP-1:

Wnt-activating small molecule potentiator-1

NPCs:

Neural progenitor cells

References

  • Aghaizu ND, Jin H, Whiting PJ (2020) Dysregulated Wnt signalling in the Alzheimer’s brain. Brain Sci 10(12):902

    Article  CAS  PubMed Central  Google Scholar 

  • Akiyama T (2000) Wnt/β-catenin signaling. Cytokine Growth Factor Rev 11(4):273–282

    Article  CAS  PubMed  Google Scholar 

  • Ali A, Ali A, Ahmad W, Ahmad N, Khan S, Nuruddin SM, Husain I (2020) Deciphering the role of WNT signaling in metabolic syndrome–LINKED Alzheimer’s disease. Mol Neurobiol 57(1):302–314

    Article  CAS  PubMed  Google Scholar 

  • Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M, Inestrosa NC (2004) Wnt-3a overcomes β-amyloid toxicity in rat hippocampal neurons. Exp Cell Res 297(1):186–196

    Article  CAS  PubMed  Google Scholar 

  • Armenteros T, Andreu Z, Hortigüela R, Lie DC, Mira H (2018) BMP and WNT signalling cooperate through LEF1 in the neuronal specification of adult hippocampal neural stem and progenitor cells. Sci Rep 8(1):1–4

    Article  CAS  Google Scholar 

  • Arredondo SB, Guerrero FG, Herrera-Soto A, Jensen-Flores J, Bustamante DB, Onate-Ponce A et al (2020a) Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells 38:422–436

    Article  CAS  PubMed  Google Scholar 

  • Arredondo SB, Valenzuela-Bezanilla D, Mardones MD, Varela-Nallar L (2020b) Role of Wnt signaling in adult hippocampal neurogenesis in health and disease. Front Cell Dev Biol 8:860

    Article  PubMed  PubMed Central  Google Scholar 

  • Assaf N, El-Shamarka ME, Salem NA, Khadrawy YA, El Sayed NS (2020) Neuroprotective effect of PPAR alpha and gamma agonists in a mouse model of amyloidogenesis through modulation of the Wnt/beta catenin pathway via targeting alpha-and beta-secretases. Prog Neuro-Psychopharmacol Biol Psychiatry 97:109793

  • Azim K, Butt AM (2011) GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia 59(4):540–553

    Article  PubMed  Google Scholar 

  • Breen MS, Browne A, Hoffman GE, Stathopoulos S, Brennand K, Buxbaum JD, Drapeau E (2020) Transcriptional signatures of participant-derived neural progenitor cells and neurons implicate altered Wnt signaling in Phelan-McDermid syndrome and autism. Molecular Autism 11(1):1–23

    Article  Google Scholar 

  • Buechler J, Salinas PC (2018) Deficient Wnt signaling and synaptic vulnerability in Alzheimer’s disease: emerging roles for the LRP6 receptor. Frontiers in Synaptic Neuroscience 10:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caricasole A, Bakker A, Copani A, Nicoletti F, Gaviraghi G, Terstappen GC (2005) Two sides of the same coin: Wnt signaling in neurodegeneration and neuro-oncology. Biosci Rep 25(5–6):309–327

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Chen Z, Tang Y, Xiao Q (2021) The involvement of noncanonical Wnt signaling in cancers. Biomed Pharmacother 133:110946

  • Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD et al (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science 361:eaan8821

  • Ciani L, Boyle KA, Dickins E, Sahores M, Anane D, Lopes DM, Gibb AJ, Salinas PC (2011) Wnt7a signaling promotes dendritic spine growth and synaptic strength through Ca2+/Calmodulin-dependent protein kinase II. Proc Natl Acad Sci 108(26):10732–10737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisternas P, Oliva CA, Torres VI, Barrera DP, Inestrosa NC (2019) Presymptomatic treatment with andrographolide improves brain metabolic markers and cognitive behavior in a model of early-onset Alzheimer’s disease. Front Cell Neurosci 13:295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai ZM, Sun S, Wang C, Huang H, Hu X, Zhang Z, Lu QR, Qiu M (2014) Stage-specific regulation of oligodendrocyte development by Wnt/β-catenin signaling. J Neurosci 34(25):8467–8473

    Article  PubMed  PubMed Central  Google Scholar 

  • Darbandi SF, Schwartz SE, Pai EL, Everitt A, Turner ML, Cheyette BN, Willsey AJ, State MW, Sohal VS, Rubenstein JL (2020) Enhancing WNT signaling restores cortical neuronal spine maturation and synaptogenesis in Tbr1 mutants. Cell Rep 31(2):107495

  • Davis EK, Zou Y, Ghosh A (2008) Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation. Neural Dev 3(1):1–7

    Article  Google Scholar 

  • Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8(5):739–750

    Article  CAS  PubMed  Google Scholar 

  • De Simone A, Tumiatti V, Andrisano V, Milelli A (2020) Glycogen synthase kinase 3β: a new gold rush in anti-Alzheimer’s disease Multitarget Drug Discovery? Miniperspective. J Med Chem

  • Engel T, Goni-Oliver P, Lucas JJ, Avila J, Hernandez F (2006) Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem 99:1445–1455

    Article  CAS  PubMed  Google Scholar 

  • Fancy SP, Baranzini SE, Zhao C, Yuk DI, Irvine KA, Kaing S, Sanai N, Franklin RJ, Rowitch DH (2009) Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev 23(13):1571–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farias GG, Godoy JA, Vázquez MC, Adani R, Meshulam H, Avila J, Amitai G, Inestrosa NC (2005) The anti-inflammatory and cholinesterase inhibitor bifunctional compound IBU-PO protects from β-amyloid neurotoxicity by acting on Wnt signaling components. Neurobiol Dis 18(1):176–183

    Article  CAS  PubMed  Google Scholar 

  • Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM, Sedaghat M (2019) The impact of curcumin and its modified formulations on Alzheimer’s disease. J Cell Physiol 234(10):16953–16965

    Article  CAS  PubMed  Google Scholar 

  • Feigenson K, Reid M, See J, Crenshaw EB 3rd, Grinspan JB (2009) Wnt signaling is sufficient to perturb oligodendrocyte maturation. Mol Cell Neurosci 42(3):255–265

    Article  CAS  PubMed  Google Scholar 

  • Feng B, Freitas AE, Gorodetski L, Wang J, Tian R, Lee YR, Grewal AS, Zou Y (2021) Planar cell polarity signaling components are a direct target of β-amyloid–associated degeneration of glutamatergic synapses. Sci Adv 7(34):eabh2307

  • Fiorentini A, Rosi MC, Grossi C, Luccarini I, Casamenti F (2010) Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS One 5:e14382

  • Freese JL, Pino D, Pleasure SJ (2010) Wnt signaling in development and disease. Neurobiol Dis 38(2):148–153

    Article  CAS  PubMed  Google Scholar 

  • Galli S, Lopes DM, Ammari R, Kopra J, Millar SE, Gibb A, Salinas PC (2014) Deficient Wnt signalling triggers striatal synaptic degeneration and impaired motor behaviour in adult mice. Nat Commun 5(1):1–3

    Article  CAS  Google Scholar 

  • Gavagan M, Fagnan E, Speltz EB, Zalatan JG (2020) The scaffold protein axin promotes signaling specificity within the Wnt pathway by suppressing competing kinase reactions. Cell Syst 10(6):515–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Fernandez C, González P, Rodríguez FJ (2020) New insights into Wnt signaling alterations in amyotrophic lateral sclerosis: a potential therapeutic target? Neural Regen Res 15(9):1580

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadi F, Akrami H, Shahpasand K, Fattahi MR (2020) Wnt signalling pathway and tau phosphorylation: Acomprehensive study on known connections. Cell Biochem Funct 38(6):686–694

  • Henderson J, Pryzborski S, Stratton R, O’Reilly S (2021) Wnt antagonist DKK-1 levels in systemic sclerosis are lower in skin but not in blood and are regulated by microRNA33a-3p. Exp Dermatol 30(1):162–168

    Article  CAS  PubMed  Google Scholar 

  • Hernandez F, Lucas J, Avila J (2013) GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis 33:S141-144

    Article  PubMed  Google Scholar 

  • Holguin N, Brodt MD, Silva MJ (2016) Activation of Wnt signaling by mechanical loading is impaired in the bone of old mice. J Bone Miner Res 31(12):2215–2226

    Article  CAS  PubMed  Google Scholar 

  • Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou TY, Zhou Y, Zhu LS, Wang X, Pang P, Wang DQ, Liuyang ZY, Man H, Lu Y, Zhu LQ, Liu D (2020) Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer’s disease. J Neurochem 154(4):441–457

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Wang L, He Y, Wei M, Yan H, Zhu H (2021) Chlorogenic acid promotes osteogenic differentiation of human dental pulp stem cells via Wnt signaling. Stem Cells Dev

  • Ille F, Sommer L (2005) Wnt signaling: multiple functions in neural development. Cellular and Molecular Life Sciences CMLS 62(10):1100–1108

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Godoy JA, Vargas JY, Arrazola MS, Rios JA, Carvajal FJ, Serrano FG, Farias GG (2013) Nicotine prevents synaptic impairment induced by amyloid-β oligomers through α7-nicotinic acetylcholine receptor activation. NeuroMol Med 15(3):549–569

    Article  CAS  Google Scholar 

  • Inestrosa NC, Montecinos-Oliva C, Fuenzalida M (2012) Wnt signaling: role in Alzheimer disease and schizophrenia. J Neuroimmune Pharmacol 7(4):788–807

    Article  PubMed  Google Scholar 

  • Inestrosa NC, Tapia-Rojas C, Lindsay CA, Zolezzi JM (2020) Wnt signaling pathway dysregulation in the aging brain: Lessons from the Octodon degus. Frontiers in Cell and Developmental Biology 8:734

    Article  PubMed  PubMed Central  Google Scholar 

  • Inglis-Broadgate SL, Thomson RE, Pellicano F, Tartaglia MA, Pontikis CC, Cooper JD, Iwata T (2005) FGFR3 regulates brain size by controlling progenitor cell proliferation and apoptosis during embryonic development. Dev Biol 279(1):73–85

    Article  CAS  PubMed  Google Scholar 

  • Iozzi S, Remelli R, Lelli B, Diamanti D, Pileri S, Bracci L, Roncarati R, Caricasole A, Bernocco S (2012) Functional characterization of a small-molecule inhibitor of the DKK1-LRP6 interaction. Int Sch Res Notices

  • Jang MH, Bonaguidi MA, Kitabatake Y, Sun J, Song J, Kang E et al (2013) Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell 12:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia L, Piña-Crespo J, Li Y (2019) Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain 12(1):1–1

    Article  Google Scholar 

  • Jiang X, Guan Y, Zhao Z, Meng F, Wang X, Gao X, Liu J, Chen Y, Zhou F, Zhou S, Wang X (2021) Potential roles of the WNT signaling pathway in amyotrophic lateral sclerosis. Cells 10(4):839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung YS, Park JI (2020) Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp Mol Med 52(2):183–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Bang J, Jeon WK (2020) The involvement of canonical Wnt signaling in memory impairment induced by chronic cerebral hypoperfusion in mice. Transl Stroke Res 1–3

  • Kimura-Yoshida C, Nakano H, Okamura D, Nakao K, Yonemura S, Belo JA, Aizawa S, Matsui Y, Matsuo I (2005) Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev Cell 9(5):639–650

    Article  CAS  PubMed  Google Scholar 

  • Kohn AD, Moon RT (2005) Wnt and calcium signaling: β-catenin-independent pathways. Cell Calcium 38(3–4):439–446

    Article  CAS  PubMed  Google Scholar 

  • Kremer A, Louis JV, Jaworski T, Van Leuven F (2011) GSK3 and Alzheimer’s disease: facts and fiction. Front Mol Neurosci 4:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Vashishta M, Kong L, Wu X, Lu JJ, Guha C, Dwarakanath BS (2021) The Role of Notch, Hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies. Front Cell Dev Biol 9

  • Laksitorini MD, Yathindranath V, Xiong W, Hombach-Klonisch S, Miller DW (2019) Modulation of Wnt/β-catenin signaling promotes blood-brain barrier phenotype in cultured brain endothelial cells. Sci Rep 9(1):1–3

    Article  Google Scholar 

  • Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D, Guo F (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33(7):3113–3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li MY, Chang CT, Han YT, Liao CP, Yu JY, Wang TW (2018) Ginkgolide B promotes neuronal differentiation through the Wnt/β-catenin pathway in neural stem cells of the postnatal mammalian subventricular zone. Sci Rep 8(1):1

    Google Scholar 

  • Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375

    Article  CAS  PubMed  Google Scholar 

  • Liebner S, Corada M, Bangsow T, Babbage J, Taddei A, Czupalla CJ, Reis M, Felici A, Wolburg H, Fruttiger M, Taketo MM (2008) Wnt/β-catenin signaling controls development of the blood–brain barrier. J Cell Biol 183(3):409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Wang K, Wei X, Xie T, Lv B, Zhou Q, Wang X (2021) Interaction of NF-κB and Wnt/β-catenin signaling pathways in Alzheimer’s disease and potential active drug treatments. Neurochem Res 1–21

  • Liu Y, Deng H, Liang L, Zhang G, Xia J, Ding K, Tang N, Wang K (2021) Depletion of VPS35 attenuates metastasis of hepatocellular carcinoma by restraining the Wnt/PCP signaling pathway. Genes & Diseases 8(2):232–240

    Article  CAS  Google Scholar 

  • Lucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J (2001) Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J 20:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo G, Xu H, Huang Y, Mo D, Song L, Jia B, Wang B, Jin Z, Miao Z (2016) Deposition of BACE-1 protein in the brains of APP/PS1 double transgenic mice. BioMed Res Int

  • Luo J, Chen J, Deng ZL, Luo X, Song WX, Sharff KA, Tang N, Haydon RC, Luu HH, He TC (2007) Wnt signaling and human diseases: what are the therapeutic implications? Lab Invest 87(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Mandelkow EM, Mandelkow E (2012) Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2:a006247

  • March-Diaz R, Lara-Ureña N, Romero-Molina C, Heras-Garvin A, Ortega-de San Luis C, Alvarez-Vergara MI, Sanchez-Garcia MA, Sanchez-Mejias E, Davila JC, Rosales-Nieves AE, Forja C (2021) Hypoxia compromises the mitochondrial metabolism of Alzheimer’s disease microglia via HIF1. Nat Aging 1(4):385–99

  • Marchetti B, Tirolo C, L’Episcopo F, Caniglia S, Testa N, Smith JA, Pluchino S, Serapide MF (2020) Parkinson’s disease, aging and adult neurogenesis: Wnt/β‐catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 19(3):e13101

  • Merenda A, Fenderico N, Maurice MM (2020) Wnt signaling in 3D: recent advances in the applications of intestinal organoids. Trends Cell Biol 30(1):60–73

    Article  CAS  PubMed  Google Scholar 

  • Mir FA, Rizvi ZA (2019) Neurobiological mechanisms involved in the pathogenesis of Alzheimer’s disease. In Biological, Diagnostic and Therapeutic Advances in Alzheimer's Disease 235–269.

  • Mulligan KA, Cheyette BN (2012) Wnt signaling in vertebrate neural development and function. J Neuroimmune Pharmacol 7(4):774–787

    Article  PubMed  PubMed Central  Google Scholar 

  • Nalesso G, Thorup AS, Eldridge SE, De Palma A, Kaur A, Peddireddi K, Blighe K, Rana S, Stott B, Vincent TL, Thomas BL (2021) Calcium calmodulin kinase II activity is required for cartilage homeostasis in osteoarthritis. Sci Rep 11(1):1–1

    Article  Google Scholar 

  • Ngo J, Hashimoto M, Hamada H, Wynshaw-Boris A (2020) Deletion of the dishevelled family of genes disrupts anterior-posterior axis specification and selectively prevents mesoderm differentiation. Dev Biol 464(2):161–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie X, Liu H, Liu L, Wang YD, Chen WD (2020) Emerging roles of Wnt ligands in human colorectal cancer. Front Oncol 10

  • Ohishi K, Toume K, Arai MA, Sadhu SK, Ahmed F, Mizoguchi T, Itoh M, Ishibashi M (2014) Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α. Bioorg Med Chem 22(17):4597–4601

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Matamoros A, Arias C (2019) Differential changes in the number and morphology of the new neurons after chronic infusion of Wnt7a, Wnt5a, and Dkk-1 in the adult hippocampus in vivo. Anat Rec 302:1647–1657

    Article  CAS  Google Scholar 

  • Ortiz-Matamoros A, Salcedo-Tello P, Avila-Muñoz E, Zepeda A, Arias C (2013) Role of wnt signaling in the control of adult hippocampal functioning in health and disease: therapeutic implications. Curr Neuropharmacol 11(5):465–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palomer E, Buechler J, Salinas PC (2019) Wnt signaling deregulation in the aging and Alzheimer’s brain. Front Cell Neurosci 13:227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pluvinage JV, Wyss-Coray T (2020) Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nat Rev Neurosci 21(2):93–102

    Article  CAS  PubMed  Google Scholar 

  • Qu Q, Sun G, Murai K, Ye P, Li W, Asuelime G et al (2013) Wnt7a regulates multiple steps of neurogenesis. Mol Cell Biol 33:2551–2559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin CA, Sun Q, Gamblin TC (2007) Tau phosphorylation by GSK-3β promotes tangle-like filament morphology. Mol Neurodegener 2(1):1–4

    Article  Google Scholar 

  • Rivera DS, Lindsay C, Codocedo JF, Morel I, Pinto C, Cisternas P, Bozinovic F, Inestrosa NC (2016) Andrographolide recovers cognitive impairment in a natural model of Alzheimer’s disease (Octodon degus) Neurobiol Aging 46:204–220

  • Rosso SB, Inestrosa NC (2013) WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabogal-Guáqueta AM, Marmolejo-Garza A, de Padua VP, Eggen B, Boddeke E, Dolga AM (2020) Microglia alterations in neurodegenerative diseases and their modeling with human induced pluripotent stem cell and other platforms. Prog Neurobiol 190:101805

  • Scali C, Caraci F, Gianfriddo M, Diodato E, Roncarati R, Pollio G, Gaviraghi G, Copani A, Nicoletti F, Terstappen GC, Caricasole A (2006) Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1. Neurobiol Dis 24:254–265

    Article  CAS  PubMed  Google Scholar 

  • Seib DR, Corsini NS, Ellwanger K, Plaas C, Mateos A, Pitzer C et al (2013a) Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 12:204–214

    Article  CAS  PubMed  Google Scholar 

  • Seib DR, Corsini NS, Ellwanger K, Plaas C, Mateos A, Pitzer C, Niehrs C, Celikel T, Martin-Villalba A (2013b) Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 12(2):204–214

    Article  CAS  PubMed  Google Scholar 

  • Seib DR, Martin-Villalba A (2015) Neurogenesis in the normal ageing hippocampus: a mini-review. Gerontology 61(4):327–335

    Article  CAS  PubMed  Google Scholar 

  • Sengoku R (2020) Aging and Alzheimer’s disease pathology. Neuropathology 40(1):22–29

    Article  PubMed  Google Scholar 

  • Serrano FG, Tapia-Rojas C, Carvajal FJ, Hancke J, Cerpa W, Inestrosa NC (2014a) Andrographolide reduces cognitive impairment in young and mature AbetaPPswe/PS-1 mice. Mol Neurodegener 9:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Shruster A, Offen D (2014) Targeting neurogenesis ameliorates danger assessment in a mouse model of Alzheimer’s disease. Behav Brain Res 261:193–201

    Article  PubMed  Google Scholar 

  • Skaper DS, Facci L, Zusso M, Giusti P (2017) Synaptic plasticity, dementia and Alzheimer disease. CNS Neurol Disord Drug Targets 16(3):220–233

    Article  CAS  PubMed  Google Scholar 

  • Sklirou AD, Gaboriaud-Kolar N, Papassideri I, Skaltsounis AL, Trougakos IP (2017) 6-bromo-indirubin-3′-oxime (6BIO), a glycogen synthase kinase-3β inhibitor, activates cytoprotective cellular modules and suppresses cellular senescence-mediated biomolecular damage in human fibroblasts. Sci Rep 7(1):1–3

    Article  CAS  Google Scholar 

  • Sloniowski, Slawomir (2011) Effects of systemic inflammation on synaptogenesis in developing mouse hippocampus. Diss. UC Riverside

  • Stamatakou E, Salinas PC (2014) Postsynaptic assembly: a role for Wnt signaling. Dev Neurobiol 74(8):818–827

    CAS  PubMed  Google Scholar 

  • Sun J, Bonaguidi MA, Jun H, Guo JU, Sun GJ, Will B et al (2015) A septo-temporal molecular gradient of sfrp3 in the dentate gyrus differentially regulates quiescent adult hippocampal neural stem cell activation. Mol Brain 8:52

    Article  PubMed  PubMed Central  Google Scholar 

  • Tapia-Rojas C, Schuller A, Lindsay CB, Ureta RC, Mejias-Reyes C, Hancke J et al (2015) Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3beta: autoregulation of GSK-3beta in vivo. Biochem J 466:415–430

    Article  CAS  PubMed  Google Scholar 

  • Tatiaparti K, Sau S, Rauf MA, Iyer AK (2020) Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer’s disease. Drug Discovery Today 25(12):2110–2129

    Article  Google Scholar 

  • Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P et al (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/beta-catenin pathway. ACS Nano 8:76–103

    Article  CAS  PubMed  Google Scholar 

  • Tiwari SK, Seth B, Agarwal S, Yadav A, Karmakar M, Gupta SK et al (2015) Ethosuximide induces hippocampal neurogenesis and reverses cognitive deficits in an amyloid-beta toxin-induced Alzheimer rat model via the phosphatidylinositol 3-kinase (PI3K)/Akt/Wnt/beta-catenin pathway. J Biol Chem 290:28540–28558

  • Toledo EM, Inestrosa NC (2010) Activation of Wnt signaling by lithium and rosiglitazone reduced spatial memory impairment and neurodegeneration in brains of an APPswe/PSEN1ΔE9 mouse model of Alzheimer’s disease. Mol Psychiatry 15(3):272–285

    Article  CAS  PubMed  Google Scholar 

  • Toth A, Zhao B, Zacharias WJ (2021) Alveolar epithelial stem cells in homeostasis and repair. Lung Stem Cells in Development, Health and Disease (ERS Monograph). Sheffield, Eur Respir Soc 122–33

  • Ueland T, Astrup E, Otterdal K, Lekva T, Janardhanan J, Prakash JA, Thomas K, Michelsen AE, Aukrust P, Varghese GM, Damås JK (2021) Secreted Wnt antagonists in scrub typhus. PLoS Negl Trop Dis 15(4):e0009185

  • Vallée A, Lecarpentier Y, Guillevin R, Vallée JN (2017) Effects of cannabidiol interactions with Wnt/β-catenin pathway and PPARγ on oxidative stress and neuroinflammation in Alzheimer’s disease. Acta Biochim Biophys Sin 49(10):853–866

    Article  PubMed  Google Scholar 

  • Van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136(19):3205–3214

    Article  PubMed  Google Scholar 

  • Varela-Nallar L, Arredondo SB, Tapia-Rojas C, Hancke J, Inestrosa NC (2015) Andrographolide stimulates neurogenesis in the adult hippocampus. Neural Plast 2015:935403

  • Varela-Nallar L, Inestrosa NC (2013) Wnt signaling in the regulation of adult hippocampal neurogenesis. Front Cell Neurosci 7:100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas JY, Ahumada J, Arrazola MS, Fuenzalida M, Inestrosa NC (2015) WASP-1, a canonical Wnt signaling potentiator, rescues hippocampal synaptic impairments induced by Aβ oligomers. Exp Neurol 264:14–25

    Article  CAS  PubMed  Google Scholar 

  • Wada A (2009) Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3β, β-catenin, and neurotrophin cascades. J Pharmacol Sci 110(1):14–28

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Zheng W, Wang T, Xie JW, Wang SL, Zhao BL, Teng WP, Wang ZY (2011) Huperzine A activates Wnt/β-catenin signaling and enhances the nonamyloidogenic pathway in an Alzheimer transgenic mouse model. Neuropsychopharmacology 36(5):1073–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wynshaw-Boris A (2004) The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation. Curr Opin Genet Dev 14(5):533–539

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, Lu CB, Wang JZ (2020a) Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. Translational Neurodegeneration 9:1–3

    Article  Google Scholar 

  • Wang Q, Lin Y, Sheng X, Xu J, Hou X, Li Y, Zhang H, Guo H, Yu Z, Ren F (2020b) Arachidonic acid promotes intestinal regeneration by activating WNT signaling. Stem Cell Rep 11 15(2):374–88

  • Wexler EM, Geschwind DH, Palmer TD (2008) Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol Psychiatry 13:285–292

    Article  CAS  PubMed  Google Scholar 

  • Yavropoulou MP, Yovos JG (2007) The role of the Wnt signaling pathway in osteoblast commitment and differentiation. Hormones-Athens 6(4):279

    Article  PubMed  Google Scholar 

  • Yousefi F, Shabaninejad Z, Vakili S, Derakhshan M, Movahedpour A, Dabiri H, Ghasemi Y, Mahjoubin-Tehran M, Nikoozadeh A, Savardashtaki A, Mirzaei H (2020) TGF-β and WNT signaling pathways in cardiac fibrosis: non-coding RNAs come into focus. Cell Communication and Signaling 18(1):1–6

    Article  Google Scholar 

  • Yuan L, Zhou M, Huang D, Wasan HS, Zhang K, Sun L, Huang H, Ma S, Shen M, Ruan S (2019) Resveratrol inhibits the invasion and metastasis of colon cancer through reversal of epithelial-mesenchymal transition via the AKT/GSK-3β/Snail signaling pathway. Mol Med Rep 20(3):2783–2795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng Q, Long Z, Feng M, Zhao Y, Luo S, Wang K et al (2019) Valproic acid stimulates hippocampal neurogenesis via activating the Wnt/beta-catenin signaling pathway in the APP/PS1/Nestin-GFP triple transgenic mouse model of Alzheimer’s disease. Front Aging Neurosci 11:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Bahety P, Ee PL (2015) Wnt co-receptor LRP5/6 overexpression confers protection against hydrogen peroxide-induced neurotoxicity and reduces tau phosphorylation in SH-SY5Y cells. Neurochem Int 87:13–21

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yin W, Shi X, Li Y (2011) Curcumin activates Wnt/β-catenin signaling pathway through inhibiting the activity of GSK-3β in APPswe transfected SY5Y cells. Eur J Pharm Sci 42(5):540–546

    Article  CAS  PubMed  Google Scholar 

  • Zheng R, Zhang ZH, Chen C, Chen Y, Jia SZ, Liu Q et al (2017) Selenomethionine promoted hippocampal neurogenesis via the PI3K-AktGSK3β-Wnt pathway in a mouse model of Alzheimer’s disease. Biochem Biophys Res Commun 485:6–15

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Chi T, Zhao X, Yang L, Song S, Lu Q et al (2018) Xanthoceraside modulates neurogenesis to ameliorate cognitive impairment in APP/PS1 transgenic mice. J Physiol Sci 68:555–565

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Government College of Pharmacy Rohru, SJJT University Rajasthan, and Chitkara University Punjab for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

PN drafted the manuscript and was involved in designing and finalizing the image/s. VS contributed to critical analysis, editing, and multiple revisions and provided expert inputs. TB contributed to critical analysis, editing, and multiple revisions of the manuscript. AKP contributed editing and provided crucial technical inputs to the manuscript. VM designed, wrote, drafted, and edited the manuscript. All authors approved the final version as submitted.

Corresponding author

Correspondence to Vineet Mehta.

Ethics declarations

Ethics approval and Consent to Participate

Not applicable

Consent for Publication

All authors have provided their consent for publication

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagu, P., Sharma, V., Behl, T. et al. Molecular Insights to the Wnt Signaling During Alzheimer’s Disorder: a Potential Target for Therapeutic Interventions. J Mol Neurosci 72, 679–690 (2022). https://doi.org/10.1007/s12031-021-01940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01940-5

Keywords

Navigation