Skip to main content

Advertisement

Log in

Emerging Role of Non-coding RNAs in Autism Spectrum Disorder

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Autism spectrum disorders (ASD) embrace a diverse set of neurodevelopmental diseases with a multifaceted genetic basis. Non-coding RNAs (ncRNAs) are among putative loci with critical participation in the development of ASD. Expression of some lncRNAs, namely RP11-466P24.2, SYP-AS1, STXBP5-AS1, and IFNG-AS1 has been decreased in ASD, while AK128569, CTD-2516F10.2, MSNP1AS, RPS10P2-AS1, LINC00693, LINC00689, NEAT1, TUG1, and Shank2‐AS lncRNAs have been over-expressed in ASD. Expression of several miRNAs which are implicated in the immunological developmental, immune responses, and protein synthesis as well as those participating in the regulation of PI3K/Akt/mTOR and EGFR signaling pathways is dysregulated in the context of ASD. In the present article, we describe investigations which appraised the role of lncRNAs, miRNAs, and circRNAs in the pathobiology of ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ASD:

Autism spectrum disorders (ASD)

ncRNAs:

Non-coding RNAs

miRNAs:

MicroRNAs

circRNAs:

Circular RNAs

NATs:

Natural antisense transcripts

References

  • Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, Endris V, Roberts W, Szatmari P, Pinto D (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42:489

    Article  CAS  PubMed  Google Scholar 

  • Berkel S, Tang W, Trevino M, Vogt M, Obenhaus HA, Gass P, Scherer SW, Sprengel R, Schratt G, Rappold GA (2012) Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Hum Mol Genet 21:344–357

    Article  CAS  PubMed  Google Scholar 

  • Bilinovich SM, Lewis K, Grepo N, Campbell DB (2019) The long noncoding RNA RPS10P2-AS1 is implicated in autism spectrum disorder risk and modulates gene expression in human neuronal progenitor cells. Front Genet 10:970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan GP, Henshall DC (2020) MicroRNAs as regulators of brain function and targets for treatment of epilepsy. Nat Rev Neurol 16:506–519

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Qin C (2015) General hallmarks of microRNAs in brain evolution and development. RNA Biol 12:701–708

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y-J, Chen C-Y, Mai T-L, Chuang C-F, Chen Y-C, Gupta SK, Yen L, Wang Y-D, Chuang T-J (2020a) Genome-wide, integrative analysis of circular RNA dysregulation and the corresponding circular RNA-microRNA-mRNA regulatory axes in autism. Genome Res 30:375–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho KH, Xu B, Blenkiron C, Fraser M (2020) Emerging roles of miRNAs in brain development and perinatal brain. Neurological Outcomes in Preterm Infants–Current Controversies and Therapies for Brain Injury

  • Cogill SB, Srivastava AK, Yang MQ, Wang L (2018) Co-expression of long non-coding RNAs and autism risk genes in the developing human brain. BMC Syst Biol 12:91–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis GM, Haas MA, Pocock R (2015) MicroRNAs: not “fine-tuners” but key regulators of neuronal development and function. Front Neurol 6:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeWitt JJ, Grepo N, Wilkinson B, Evgrafov OV, Knowles JA, Campbell DB (2016) Impact of the autism-associated long noncoding RNA MSNP1AS on neuronal architecture and gene expression in human neural progenitor cells. Genes 7(10):76

  • Ding Y, Wang X, Pan J, Ji M, Luo Z, Zhao P, Zhang Y, Wang G (2020) Aberrant expression of long non-coding RNAs (lncRNAs) is involved in brain glioma development. Arch Med Sci 16:177

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    Article  CAS  PubMed  Google Scholar 

  • Fallah H, Sayad A, Ranjbaran F, Talebian F, Ghafouri-Fard S, Taheri M (2020) IFNG/IFNG-AS1 expression level balance: implications for autism spectrum disorder. Metab Brain Dis 35:327–333

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Fullwood MJ (2016) Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics 14:42–54

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghafouri-Fard S, Eghtedarian R, Hussen B, Motevaseli E, Arsang-Jang S, Taheri M (2021) Expression analysis of VDR-related LncRNAs in autism spectrum disorder. JMol Neurosci 71

  • Hanan M, Soreq H, Kadener S (2017) CircRNAs in the brain. RNA Biol 14:1028–1034

    Article  PubMed  Google Scholar 

  • Hicks SD, Carpenter RL, Wagner KE, Pauley R, Barros M, Tierney-Aves C, Barns S, Greene CD, Middleton FA (2020) Saliva microRNA differentiates children with autism from peers with typical and atypical development. J Am Acad Child Adolesc Psychiatry 59:296–308

    Article  PubMed  Google Scholar 

  • Hu Z, Gao S, Lindberg D, Panja D, Wakabayashi Y, Li K, Kleinman JE, Zhu J, Li Z (2019) Temporal dynamics of miRNAs in human DLPFC and its association with miRNA dysregulation in schizophrenia. Transl Psychiatry 9:1–17

    CAS  Google Scholar 

  • Hu Z, Hom S, Kudze T, Tong X-J, Choi S, Aramuni G, Zhang W, Kaplan JM (2012) Neurexin and neuroligin mediate retrograde synaptic inhibition in C. elegans. Science 337:980–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jyonouchi H, Geng L, Toruner GA, Rose S, Bennuri SC, Frye RE (2019) Serum microRNAs in ASD: association with monocyte cytokine profiles and mitochondrial respiration. Front Psychiatry 10:614

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashi K, Henderson L, Bonetti A, Carninci P (2016) Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta Gene Regul Mech 1859:3–15

  • Kerin T, Ramanathan A, Rivas K, Grepo N, Coetzee GA, Campbell DB (2012) A noncoding RNA antisense to moesin at 5p14.1 in autism. Sci Transl Med 4:128ra40

  • Kichukova T, Petrov V, Popov N, Minchev D, Naimov S, Minkov I, Vachev T (2021) Identification of serum microRNA signatures associated with autism spectrum disorder as promising candidate biomarkers. Heliyon 7:e07462

  • Leblond CS, Heinrich J, Delorme R, Proepper C, Betancur C, Huguet G, Konyukh M, Chaste P, Ey E, Rastam M (2012) Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet 8:e1002521

  • Lu J, Zhu Y, Williams S, Watts M, Tonta MA, Coleman HA, Parkington HC, Claudianos C (2020) Autism-associated miR-873 regulates ARID1B, SHANK3 and NRXN2 involved in neurodevelopment. Transl Psychiatry 10:418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo T, Liu P, Wang XY, Li LZ, Zhao LP, Huang J, Li YM, Ou JL, Peng XQ (2019) Effect of the autism-associated lncRNA Shank2-AS on architecture and growth of neurons. J Cell Biochem 120(2):1754–1762

    Article  CAS  Google Scholar 

  • Luo T, Ou JN, Cao LF, Peng XQ, Li YM, Tian YQ (2020) The Autism-Related lncRNA MSNP1AS Regulates Moesin Protein to Influence the RhoA, Rac1, and PI3K/Akt Pathways and Regulate the Structure and Survival of Neurons. Autism Research 13(12):2073–2082

    Article  PubMed  Google Scholar 

  • Macfarlane L-A, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta SL, Dempsey RJ, Vemuganti R (2020) Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol 186:101746

  • Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18:147

    Article  CAS  PubMed  Google Scholar 

  • Moore D, Meays BM, Madduri LSV, Shahjin F, Chand S, Niu M, Albahrani A, Guda C, Pendyala G, Fox HS, Yelamanchili SV (2019) Downregulation of an evolutionary young miR-1290 in an iPSC-derived neural stem cell model of autism spectrum disorder. Stem Cells Int 2019:8710180

    Article  PubMed  PubMed Central  Google Scholar 

  • Mor M, Nardone S, Sams DS, Elliott E (2015) Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism 6:46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasu MM, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, Wakuda T, Iwata K, Tsujii M, Sugiyama T, Mori N (2014) Serum microRNA profiles in children with autism. Mol Autism 5:40

    Article  CAS  Google Scholar 

  • Nakata M, Kimura R, Funabiki Y, Awaya T, Murai T, Hagiwara M (2019) MicroRNA profiling in adults with high-functioning autism spectrum disorder. Mol Brain 12:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grützner F, Kaessmann H (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–640

    Article  CAS  PubMed  Google Scholar 

  • Nguyen LS, Fregeac J, Bole-Feysot C, Cagnard N, Iyer A, Anink J, Aronica E, Alibeu O, Nitschke P, Colleaux L (2018) Role of miR-146a in neural stem cell differentiation and neural lineage determination: relevance for neurodevelopmental disorders. Mol Autism 9:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nt P, Ds M, Mm N, In M, Ti V (2018) Investigation of circulating serum microRNA-328-3p and microRNA-3135a expression as promising novel biomarkers for autism spectrum disorder. Balkan J Med Genet 21:5–12

    Article  PubMed  Google Scholar 

  • Ozkul Y, Taheri S, Bayram KK, Sener EF, Mehmetbeyoglu E, Oztop DB, Aybuga F, Tufan E, Bayram A, Dolu N, Zararsiz G, Kianmehr L, Beyaz F, Doganyigit Z, Cuzin F, Rassoulzadegan M (2020) A heritable profile of six miRNAs in autistic patients and mouse models. Sci Rep 10:9011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozonoff S, Young GS, Carter A, Messinger D, Yirmiya N, Zwaigenbaum L, Bryson S, Carver LJ, Constantino JN, Dobkins K, Hutman T, Iverson JM, Landa R, Rogers SJ, Sigman M, Stone WL (2011) Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 128:e488–e495

    Article  PubMed  PubMed Central  Google Scholar 

  • Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G, Gandal MJ, Hartl C, Leppa V, Ubieta LT, Huang J, Lowe JK, Blencowe BJ, Horvath S, Geschwind DH (2016) Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540:423–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quesnel-Vallieres M, Weatheritt RJ, Cordes SP, Blencowe BJ (2019) Autism spectrum disorder: insights into convergent mechanisms from transcriptomics. Nat Rev Genet 20:51–63

    Article  CAS  PubMed  Google Scholar 

  • Roberts TC, Morris KV, Wood MJA (2014) The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease. Philos Trans R Soc Lond Ser B Biol Sci 369:20130507

  • Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA (2009) Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med 163:907–914

    Article  PubMed  Google Scholar 

  • Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Öhman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58:870–885

    Article  CAS  PubMed  Google Scholar 

  • Safari M, Noroozi R, Taheri M, Ghafouri-Fard S (2020) The rs12826786 in HOTAIR lncRNA Is Associated with Risk of Autism Spectrum Disorder. J Mol Neurosci 70:175–179

    Article  CAS  PubMed  Google Scholar 

  • Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, Dilullo NM, Parikshak NN, Stein JL (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayad A, Omrani MD, Fallah H, Taheri M, Ghafouri-Fard S (2019) Aberrant expression of long non-coding RNAs in peripheral blood of autistic patients. J Mol Neurosci 67:276–281

    Article  CAS  PubMed  Google Scholar 

  • Siedlecki-Wullich D, Català-Solsona J, Fábregas C, Hernández I, Clarimon J, Lleó A, Boada M, Saura CA, Rodríguez-Álvarez J, Miñano-Molina AJ (2019) Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer’s disease. Alzheimers Res Ther 11:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon DJ, Madison JM, Conery AL, Thompson-Peer KL, Soskis M, Ruvkun GB, Kaplan JM, Kim JK (2008) The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions. Cell 133:903–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taheri M, Tamizkar KH, Omrani S, Arsang-Jang S, Ghafouri-Fard S, Omrani MD (2021a) MEG3 lncRNA is over-expressed in autism spectrum disorder. Metab Brain Dis

  • Taheri M, Younesi Z, Moradi S, Tamizkar KH, Razjouyan K, Arsang-Jang S, Ghafouri-Fard S, Neishabouri SM (2021b) Altered expression of CCAT1 and CCAT2 lncRNAs in autism spectrum disorder. Gene Rep 23:101172

  • Tamizkar KH, Ghafouri-Fard S, Omrani MD, Pouresmaeili F, Arsang-Jang S, Taheri M (2021) Altered expression of lncRNAs in autism spectrum disorder. Metab Brain Dis 36:983–990

    Article  CAS  PubMed  Google Scholar 

  • Vaccaro TD, Sorrentino JM, Salvador S, Veit T, Souza DO, De Almeida RF (2018) Alterations in the microRNA of the blood of autism spectrum disorder patients: effects on epigenetic regulation and potential biomarkers. Behav Sci (Basel) 8

  • Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, Holm IE, Kjems J (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol 16:245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Zhao X, Ju W, Flory M, Zhong J, Jiang S, Wang P, Dong X, Tao X, Chen Q, Shen C, Zhong M, Yu Y, Brown WT, Zhong N (2015) Genome-wide differential expression of synaptic long noncoding RNAs in autism spectrum disorder. Transl Psychiatry 5:e660

  • Won H, Mah W, Kim E (2013) Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci 6:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu YE, Parikshak NN, Belgard TG, Geschwind DH (2016) Genome-wide, integrative analysis implicates microRNA dysregulation in autism spectrum disorder. Nat Neurosci 19:1463–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yapijakis C (2020) Regulatory role of microRNAs in brain development and function. GeNeDis 2018. Springer

  • Yoshino Y, Roy B, Dwivedi Y (2020) Differential and unique patterns of synaptic miRNA expression in dorsolateral prefrontal cortex of depressed subjects. Neuropsychopharmacology 1–11

  • Yu C-Y, Kuo H-C (2019) The emerging roles and functions of circular RNAs and their generation. J Biomed Sci 26:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan Y, Jiaoming L, Xiang W, Yanhui L, Shu J, Maling G, Qing M (2018) Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma. J Neurooncol 137:493–502

    Article  PubMed  CAS  Google Scholar 

  • Zaslavsky K, Zhang W-B, McCready FP, Rodrigues DC, Deneault E, Loo C, Zhao M, Ross PJ, el Hajjar J, Romm A (2019) SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat Neurosci 22:556–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziats MN, Rennert OM (2013) Aberrant expression of long noncoding RNAs in autistic brain. J Mol Neurosci 49:589–593

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SGF wrote the draft and revised it. MT designed and supervised the study. SB and KE edited the final version and collected the data. RN, BMH, and RE collected the data and designed the figure and tables. All the authors read and approved the submitted version.

Corresponding authors

Correspondence to Mohammad Taheri or Kaveh Ebrahimzadeh.

Ethics declarations

Ethics Approval and Consent to Participate

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent of Publication

Not applicable.

Competing Interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafouri-Fard, S., Noroozi, R., Brand, S. et al. Emerging Role of Non-coding RNAs in Autism Spectrum Disorder. J Mol Neurosci 72, 201–216 (2022). https://doi.org/10.1007/s12031-021-01934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-021-01934-3

Keywords

Navigation