Skip to main content

Advertisement

Log in

Long Non-Coding RNA MALAT1 Promotes Acute Cerebral Infarction Through miRNAs-Mediated hs-CRP Regulation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The occurrence of cerebral infarction commonly takes atherosclerosis as the pathophysiological basis, accompanied by chronic inflammation. Hypersensitive C-reactive protein (hs-CRP) is an important inflammatory factor involved in the formation of atherosclerosis. This study aims to investigate the regulation of hs-CRP expression by long-chain non-coding RNA (LncRNA) MALAT1 in acute cerebral infarction patients. Plasma levels of LncRNA MALAT1 and hsa-miR-145-5p, hsa-miR-140-5p, hsa-miR-483-3p, and hsa-miR-338-3p in 256 Chinese Han ACI patients and 256 controls were analyzed. HUVECs were transfected with LncRNA MALAT1, MALAT1 NC, and si-MALAT1, respectively. The expression levels of hsa-miR-145-5p, hsa-miR-140-5p, hsa-miR-483-3p, and hsa-miR-338-3p were analyzed. Then, HUVECs were transfected with hsa-miR-145-5p inhibitor, hsa-miR-140-5p inhibitor, hsa-miR-483-3p inhibitor, hsa-miR-338-3p inhibitor, and hsa-miR-145-5p mimic, hsa-miR-140-5p mimic, hsa-miR-483-3p mimic, hsa-miR-338-3p mimic, and the expression level of hs-CRP was detected by Western blotting. The levels of hsa-miR-145-5p, hsa-miR-140-5p, hsa-miR-483-3p, and hsa-miR-338-3p in the plasma of ACI patients were significantly lower than those in the control group (p < 0.001), and the plasma LncRNA MALAT1 levels were significantly higher in ACI patients than in the control group (p < 0.001). The level of LncRNA MALAT1 in plasma of ACI patients and control group was negatively correlated with hsa-miR-145-5p, hsa-miR-140-5p, hsa-miR-483-3p, and hsa-miR-338-3p (r = − 0.36, − 0.79, − 0.76, − 0.75; − 0.60, − 0.68, − 0.48, − 0.56). Plasma levels of hsa-miR-145-5p, hsa-miR-140-5p, hsa-miR-483-3p, and hsa-miR-338-3p were negatively correlated with hs-CRP levels in patients with ACI and controls (r = − 0.74, − 0.81, − 0.84, − 0.56; − 0.61, − 0.69, − 0.69, − 0.50). MALAT1 transfection resulted in the decreased levels of hsa-miR-145-5p, hsa-miR-140-5p, hsa-miR-483-3p, and hsa-miR-338-3p in HUVECs while overexpression of hsa-miR-145-5p, hsa-miR-140-5p, hsa-miR-483-3p, and hsa-miR-338-3p led to a decrease in hs-CRP levels in HUVECs. LncRNA MALAT1 induced the upregulation of CRP expression through inhibiting the expression of hsa-miR-145-5p, hsa-miR-140-5p, hsa-miR-483-3p, and hsa-miR-338-3p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bielewicz J, Kurzepa J, Lagowska-Lenard M, Bartosik-Psujek H (2010) The novel views on the patomechanism of ischemic stroke. Wiad Lek 63:213–220

    PubMed  Google Scholar 

  • Chang J, Liu X, Sun Y (2017) Mortality due to acute myocardial infarction in China from 1987 to 2014: secular trends and age-period-cohort effects. Int J Cardiol 227:229–238

    Article  Google Scholar 

  • Cho SF, Chang YC, Chang CS, Lin SF, Liu YC, Hsiao HH, Chang JG, Liu TC (2014) MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression. BMC Cancer 14:809

    Article  Google Scholar 

  • Clark BS, Blackshaw S (2014) Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 5:164

    Article  Google Scholar 

  • Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE et al (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55–62

    Article  Google Scholar 

  • Dharap A, Nakka VP, Vemuganti R (2012) Effect of focal ischemia on long noncoding RNAs. Stroke 43:2800–2802

    Article  CAS  Google Scholar 

  • Guo D, Ma J, Yan L, Li T, Li Z, Han X, Shui S (2017) Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem 43:182–194

    Article  CAS  Google Scholar 

  • Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P, Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S, Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076

    Article  CAS  Google Scholar 

  • Han Y, Qiu H, Pei X, Fan Y, Tian H et al (2018) Low-dose sinapic acid abates the pyroptosis of macrophages by downregulation of lncRNA-MALAT1 in rats with diabetic atherosclerosis. J Cardiovasc Pharmacol 71:104–112

    CAS  PubMed  Google Scholar 

  • Hind CR, Thomson SP, Winearls CG, Pepys MB (1985) Serum C-reactive protein concentration in the management of infection in patients treated by continuous ambulatory peritoneal dialysis. J Clin Pathol 38:459–463

    Article  CAS  Google Scholar 

  • Hu G, Tang Q, Sharma S, Yu F, Escobar TM, Muljo SA, Zhu J, Zhao K (2013) Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol 14:1190–1198

    Article  CAS  Google Scholar 

  • Huang JK, Ma L, Song WH, Lu BY, Huang YB, Dong HM, Ma XK, Zhu ZZ, Zhou R (2016) MALAT1 promotes the proliferation and invasion of thyroid cancer cells via regulating the expression of IQGAP1. Biomed Pharmacother 83:1–7

    Article  Google Scholar 

  • Ma AJ, Pan XD, Zhang CS, Xing Y, Zhang YN (2006) A linkage between beta-fibrinogen gene -148C/T polymorphism and cerebral infarction. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 23:202–204

    CAS  PubMed  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20:300–307

    Article  CAS  Google Scholar 

  • Mohr AM, Mott JL (2015) Overview of microRNA biology. Semin Liver Dis 35:3–11

    Article  CAS  Google Scholar 

  • Murray CJ, Lopez AD (2013) Measuring the global burden of disease. N Engl J Med 369:448–457

    Article  CAS  Google Scholar 

  • Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111:1805–1812

    Article  CAS  Google Scholar 

  • Randall SM, Zilkens R, Duke JM, Boyd JH (2016) Western Australia population trends in the incidence of acute myocardial infarction between 1993 and 2012. Int J Cardiol 222:678–682

    Article  Google Scholar 

  • Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH (1998) Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 98:731–733

    Article  CAS  Google Scholar 

  • Runge S, Sparrer KM, Lassig C, Hembach K, Baum A et al (2014) In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathog 10:e1004081

    Article  Google Scholar 

  • Schaefer JS (2016) MicroRNAs: how many in inflammatory bowel disease? Curr Opin Gastroenterol 32:258–266

    Article  CAS  Google Scholar 

  • Smith CJ, Emsley HC, Vail A, Georgiou RF, Rothwell NJ et al (2006) Variability of the systemic acute phase response after ischemic stroke. J Neurol Sci 251:77–81

    Article  CAS  Google Scholar 

  • Soroosh A, Koutsioumpa M, Pothoulakis C, Iliopoulos D (2018) Functional role and therapeutic targeting of microRNAs in inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 314:G256–G262

    Article  Google Scholar 

  • Spizzo R, Almeida MI, Colombatti A, Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31:4577–4587

    Article  CAS  Google Scholar 

  • Tang SC, Luo CJ, Zhang KH, Li K, Fan XH et al (2017) Effects of dl-3-n-butylphthalide on serum VEGF and bFGF levels in acute cerebral infarction. Eur Rev Med Pharmacol Sci 21:4431–4436

    PubMed  Google Scholar 

  • Tee AE, Liu B, Song R, Li J, Pasquier E, Cheung BB, Jiang C, Marshall GM, Haber M, Norris MD, Fletcher JI, Dinger ME, Liu T (2016) The long noncoding RNA MALAT1 promotes tumor-driven angiogenesis by up-regulating pro-angiogenic gene expression. Oncotarget 7:8663–8675

    Article  Google Scholar 

  • Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    Article  CAS  Google Scholar 

  • Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, Zhang Y, Gorospe M, Prasanth SG, Lal A, Prasanth KV (2013) Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9:e1003368

    Article  CAS  Google Scholar 

  • Vemuganti R (2013) All’s well that transcribes well: non-coding RNAs and post-stroke brain damage. Neurochem Int 63:438–449

    Article  CAS  Google Scholar 

  • Volny O, Kasickova L, Coufalova D, Cimflova P, Novak J (2015) microRNAs in cerebrovascular disease. Adv Exp Med Biol 888:155–195

    Article  Google Scholar 

  • Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361

    Article  CAS  Google Scholar 

  • Wong CX, Sun MT, Lau DH, Brooks AG, Sullivan T, Worthley MI, Roberts-Thomson KC, Sanders P (2013) Nationwide trends in the incidence of acute myocardial infarction in Australia, 1993-2010. Am J Cardiol 112:169–173

    Article  Google Scholar 

  • Xiao B, Zhang X, Li Y, Tang Z, Yang S, Mu Y, Cui W, Ao H, Li K (2009) Identification, bioinformatic analysis and expression profiling of candidate mRNA-like non-coding RNAs in Sus scrofa. J Genet Genomics 36:695–702

    Article  CAS  Google Scholar 

  • Xiaoyan W, Pais EM, Lan L, Jingrui C, Lin M et al (2017) MicroRNA-155: a novel armamentarium against inflammatory diseases. Inflammation 40:708–716

    Article  CAS  Google Scholar 

  • Yang G, Wang Y, Zeng Y, Gao GF, Liang X, Zhou M, Wan X, Yu S, Jiang Y, Naghavi M, Vos T, Wang H, Lopez AD, Murray CJL (2013) Rapid health transition in China, 1990-2010: findings from the global burden of disease study 2010. Lancet 381:1987–2015

    Article  Google Scholar 

  • Zhang H, Masoudi FA, Li J, Wang Q, Li X et al (2015) National assessment of early beta-blocker therapy in patients with acute myocardial infarction in China, 2001-2011: the China Patient-centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective AMI Study. Am Heart J 170(506–515):e501

    Google Scholar 

  • Zhang M, Gu H, Chen J, Zhou X (2016a) Involvement of long noncoding RNA MALAT1 in the pathogenesis of diabetic cardiomyopathy. Int J Cardiol 202:753–755

    Article  Google Scholar 

  • Zhang J, Yuan L, Zhang X, Hamblin MH, Zhu T, Meng F, Li Y, Chen YE, Yin KJ (2016b) Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia. Exp Neurol 277:162–170

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Important Weak Subject Construction Project of Pudong Health and Family Planning Commission of Shanghai (No. PWZbr2017-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Teng.

Ethics declarations

The experimental scheme was approved by the Ethics Committee of Shanghai East Hospital, and all patients and healthy individuals signed informed consent forms.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, L., Meng, R. Long Non-Coding RNA MALAT1 Promotes Acute Cerebral Infarction Through miRNAs-Mediated hs-CRP Regulation. J Mol Neurosci 69, 494–504 (2019). https://doi.org/10.1007/s12031-019-01384-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01384-y

Keywords

Navigation