Skip to main content

Advertisement

Log in

Ultrasound-targeted microbubble destruction (UTMD)-mediated miR-150-5p attenuates oxygen and glucose deprivation-induced cardiomyocyte injury by inhibiting TTC5 expression

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Cardiomyocyte injury is a typical feature in cardiovascular diseases. Changes in cardiomyocytes strongly affect the progression of cardiovascular diseases. This work aimed to investigate the biological function and potential mechanism of action of miR-150-5p in cardiomyocytes.

Methods and results

A myocardial ischemia (MI) injury rat model was constructed to detect miR-150-5p and tetratricopeptide repeat domain 5 (TTC5) expression during heart ischemia injury. Primary cardiomyocytes were isolated for in vitro study. CCK-8 assays were used to detect cardiomyocyte viability. Western blots were used to detect TTC5 and P53 expression. qPCR was utilized to measure RNA expression of miR-150-5p and TTC5. The TUNEL assay was used to determine cell apoptosis. ELISA was used to determine cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels in heart tissues and cell culture supernatants. A dual-luciferase reporter assay was carried out to verify the binding ability between miR-150-5p and TTC5. Oxygen–glucose deprivation (OGD) treatment significantly inhibited cell viability. Ultrasound-targeted microbubble destruction (UTMD)-mediated uptake of miR-150-5p inverted these results. Additionally, UTMD-mediated uptake of miR-150-5p retarded the effects of OGD treatment on cell apoptosis. Besides, UTMD-mediated uptake of miR-150-5p counteracted the effects of OGD treatment on the inflammatory response by regulating cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels. For the mechanism of the protective effect on the heart, we predicted and confirmed that miR-150-5p bound to TTC5 and inhibited TTC5 expression.

Conclusions

UTMD-mediated uptake of miR-150-5p attenuated OGD-induced primary cardiomyocyte injury by inhibiting TTC5 expression. This discovery contributes toward further understanding the progression of primary cardiomyocyte injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Code availability

Not applicable.

References

  1. Frangogiannis NG (2015) Pathophysiology of myocardial infarction. Compr Physiol 5(4):1841–1875. https://doi.org/10.1002/cphy.c150006

    Article  PubMed  Google Scholar 

  2. Koleini N, Kardami E (2017) Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget 8(28):46663–46680. https://doi.org/10.18632/oncotarget.16944

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kyselovic J, Leddy JJ (2017) Cardiac fibrosis: the beneficial effects of exercise in cardiac fibrosis. Adv Exp Med Biol 999:257–268. https://doi.org/10.1007/978-981-10-4307-9_14

    Article  PubMed  Google Scholar 

  4. Yuan X, Braun T (2017) Multimodal regulation of cardiac myocyte proliferation. Circ Res 121(3):293–309. https://doi.org/10.1161/circresaha.117.308428

    Article  CAS  PubMed  Google Scholar 

  5. Ye B, Chen X, Dai S, Han J, Liang X, Lin S, Cai X, Huang Z, Huang W (2019) Emodin alleviates myocardial ischemia/reperfusion injury by inhibiting gasdermin D-mediated pyroptosis in cardiomyocytes. Drug Des Dev Ther 13:975–990. https://doi.org/10.2147/dddt.S195412

    Article  CAS  Google Scholar 

  6. Cai Y, Yu X, Hu S, Yu J (2009) A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics 7(4):147–154. https://doi.org/10.1016/s1672-0229(08)60044-3

    Article  CAS  PubMed  Google Scholar 

  7. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141(4):1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  8. Sanjay S, Girish C (2017) Role of miRNA and its potential as a novel diagnostic biomarker in drug-induced liver injury. Eur J Clin Pharmacol 73(4):399–407. https://doi.org/10.1007/s00228-016-2183-1

    Article  CAS  PubMed  Google Scholar 

  9. Tutar Y (2014) miRNA and cancer; computational and experimental approaches. Curr Pharm Biotechnol 15(5):429. https://doi.org/10.2174/138920101505140828161335

    Article  CAS  PubMed  Google Scholar 

  10. Verjans R, Peters T, Beaumont FJ, van Leeuwen R, van Herwaarden T, Verhesen W, Munts C, Bijnen M, Henkens M, Diez J, de Windt LJ, van Nieuwenhoven FA, van Bilsen M, Goumans MJ, Heymans S, Gonzalez A, Schroen B (2018) MicroRNA-221/222 family counteracts myocardial fibrosis in pressure overload-induced heart failure. Hypertension 71(2):280–288. https://doi.org/10.1161/hypertensionaha.117.10094

    Article  CAS  PubMed  Google Scholar 

  11. Lock MC, Tellam RL, Botting KJ, Wang KCW, Selvanayagam JB, Brooks DA, Seed M, Morrison JL (2018) The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults. J Physiol 596(23):5625–5640. https://doi.org/10.1113/jp276072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernardo BC, Ooi JY, Lin RC, McMullen JR (2015) miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Fut Med Chem 7(13):1771–1792. https://doi.org/10.4155/fmc.15.107

    Article  CAS  Google Scholar 

  13. Liu X, Deng Y, Xu Y, Jin W, Li H (2018) MicroRNA-223 protects neonatal rat cardiomyocytes and H9c2 cells from hypoxia-induced apoptosis and excessive autophagy via the Akt/mTOR pathway by targeting PARP-1. J Mol Cell Cardiol 118:133–146. https://doi.org/10.1016/j.yjmcc.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  14. Deng S, Zhao Q, Zhen L, Zhang C, Liu C, Wang G, Zhang L, Bao L, Lu Y, Meng L, Lu J, Yu P, Lin X, Zhang Y, Chen YH, Fan H, Cho WC, Liu Z, Yu Z (2017) Neonatal heart-enriched miR-708 promotes proliferation and stress resistance of cardiomyocytes in rodents. Theranostics 7(7):1953–1965. https://doi.org/10.7150/thno.16478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakr M, Takino T, Sabit H, Nakada M, Li Z, Sato H (2016) miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase. Gene 587(2):155–162. https://doi.org/10.1016/j.gene.2016.04.058

    Article  CAS  PubMed  Google Scholar 

  16. Dai FQ, Li CR, Fan XQ, Tan L, Wang RT, Jin H (2019) miR-150-5p inhibits non-small-cell lung cancer metastasis and recurrence by targeting HMGA2 and beta-catenin signaling. Mol Ther Nucleic Acids 16:675–685. https://doi.org/10.1016/j.omtn.2019.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li T, Xie J, Shen C, Cheng D, Shi Y, Wu Z, Zhan Q, Deng X, Chen H, Shen B, Peng C, Li H, Zhu Z (2014) miR-150-5p inhibits hepatoma cell migration and invasion by targeting MMP14. PLoS ONE 9(12):e115577. https://doi.org/10.1371/journal.pone.0115577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen J, Xing W, Gong F, Wang W, Yan Y, Zhang Y, Xie C, Fu S (2019) MiR-150-5p retards the progression of myocardial fibrosis by targeting EGR1. Cell Cycle 18(12):1335–1348. https://doi.org/10.1080/15384101.2019.1617614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scrutinio D, Conserva F, Passantino A, Iacoviello M, Lagioia R, Gesualdo L (2017) Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: a genome-wide prospective study. J Heart Lung Transplant 36(6):616–624. https://doi.org/10.1016/j.healun.2017.02.008

    Article  PubMed  Google Scholar 

  20. Amabile PG, Waugh JM, Lewis TN, Elkins CJ, Janas W, Dake MD (2001) High-efficiency endovascular gene delivery via therapeutic ultrasound. J Am Coll Cardiol 37(7):1975–1980. https://doi.org/10.1016/s0735-1097(01)01253-0

    Article  CAS  PubMed  Google Scholar 

  21. Bonci D, Cittadini A, Latronico MV, Borello U, Aycock JK, Drusco A, Innocenzi A, Follenzi A, Lavitrano M, Monti MG, Ross J Jr, Naldini L, Peschle C, Cossu G, Condorelli G (2003) “Advanced” generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther 10(8):630–636. https://doi.org/10.1038/sj.gt.3301936

    Article  CAS  PubMed  Google Scholar 

  22. Qin D, Li H, Xie H (2018) Ultrasoundtargeted microbubble destructionmediated miR205 enhances cisplatin cytotoxicity in prostate cancer cells. Mol Med Rep 18(3):3242–3250. https://doi.org/10.3892/mmr.2018.9316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA, Hohmeier HE, Newgard CB, Grayburn PA (2006) Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci USA 103(22):8469–8474. https://doi.org/10.1073/pnas.0602921103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sutton JT, Raymond JL, Verleye MC, Pyne-Geithman GJ, Holland CK (2014) Pulsed ultrasound enhances the delivery of nitric oxide from bubble liposomes to ex vivo porcine carotid tissue. Int J Nanomed 9:4671–4683. https://doi.org/10.2147/ijn.S63850

    Article  CAS  Google Scholar 

  25. Wu S, Li L, Wang G, Shen W, Xu Y, Liu Z, Zhuo Z, Xia H, Gao Y, Tan K (2014) Ultrasound-targeted stromal cell-derived factor-1-loaded microbubble destruction promotes mesenchymal stem cell homing to kidneys in diabetic nephropathy rats. Int J Nanomed 9:5639–5651. https://doi.org/10.2147/ijn.S73950

    Article  Google Scholar 

  26. Chen ZY, Liang K, Qiu RX, Luo LP (2011) Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. J Ultrasound Med 30(9):1247–1258. https://doi.org/10.7863/jum.2011.30.9.1247

    Article  PubMed  Google Scholar 

  27. Li P, Gao Y, Liu Z, Tan K, Zuo Z, Xia H, Yang D, Zhang Y, Lu D (2013) DNA transfection of bone marrow stromal cells using microbubble-mediated ultrasound and polyethylenimine: an in vitro study. Cell Biochem Biophys 66(3):775–786. https://doi.org/10.1007/s12013-013-9523-x

    Article  CAS  PubMed  Google Scholar 

  28. Zhang L, Sun Z, Ren P, Lee RJ, Xiang G, Lv Q, Han W, Wang J, Ge S, Xie M (2015) Ultrasound-targeted microbubble destruction (UTMD) assisted delivery of shRNA against PHD2 into H9C2 cells. PLoS ONE 10(8):e0134629. https://doi.org/10.1371/journal.pone.0134629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sander V, CeG Su, Jopling C, Morera C, Izpisua Belmonte JC (2013) Isolation and in vitro culture of primary cardiomyocytes from adult zebrafish hearts. Nat Protoc 8(4):800–809. https://doi.org/10.1038/nprot.2013.041

    Article  CAS  PubMed  Google Scholar 

  30. Rupaimoole R, Slack FJ (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16(3):203–222. https://doi.org/10.1038/nrd.2016.246

    Article  CAS  PubMed  Google Scholar 

  31. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227. https://doi.org/10.1146/annurev.pathol.4.110807.092222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hathaway QA, Durr AJ, Shepherd DL, Pinti MV, Brandebura AN, Nichols CE, Kunovac A, Goldsmith WT, Friend SA, Abukabda AB, Fink GK, Nurkiewicz TR, Hollander JM (2019) miRNA-378a as a key regulator of cardiovascular health following engineered nanomaterial inhalation exposure. Nanotoxicology 13(5):644–663. https://doi.org/10.1080/17435390.2019.1570372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu Y, Jin G, Li B, Chen Y, Zhong L, Chen G, Chen X, Zhong J, Liao W, Liao Y, Wang Y, Bin J (2019) Suppression of miRNA let-7i-5p promotes cardiomyocyte proliferation and repairs heart function post injury by targetting CCND2 and E2F2. Clin Sci (Lond) 133(3):425–441. https://doi.org/10.1042/cs20181002

    Article  CAS  Google Scholar 

  34. Yu L, Xiao Y, Zhou X, Wang J, Chen S, Peng T, Zhu X (2019) TRIP13 interference inhibits the proliferation and metastasis of thyroid cancer cells through regulating TTC5/p53 pathway and epithelial-mesenchymal transition related genes expression. Biomed Pharmacother 120:109508. https://doi.org/10.1016/j.biopha.2019.109508

    Article  CAS  PubMed  Google Scholar 

  35. Lin Z, Gasic I, Chandrasekaran V, Peters N, Shao S, Mitchison TJ, Hegde RS (2020) TTC5 mediates autoregulation of tubulin via mRNA degradation. Science 367(6473):100–104. https://doi.org/10.1126/science.aaz4352

    Article  CAS  PubMed  Google Scholar 

  36. Rasheed A, Gumus E, Zaki M, Johnson K, Manzoor H, LaForce G, Ross D, McEvoy-Venneri J, Stanley V, Lee S, Virani A, Ben-Omran T, Gleeson JG, Naz S, Schaffer A (2021) Bi-allelic TTC5 variants cause delayed developmental milestones and intellectual disability. J Med Genet 58(4):237–246. https://doi.org/10.1136/jmedgenet-2020-106849

    Article  CAS  PubMed  Google Scholar 

  37. Lynch JT, Somerville TD, Spencer GJ, Huang X, Somervaille TC (2013) TTC5 is required to prevent apoptosis of acute myeloid leukemia stem cells. Cell Death Dis 4(4):e573. https://doi.org/10.1038/cddis.2013.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu X, Klionsky DJ (2019) Regulation of JMY’s actin nucleation activity by TTC5/STRAP and LC3 during autophagy. Autophagy 15(3):373–374. https://doi.org/10.1080/15548627.2018.1564417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen H, Hwang JH (2013) Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors. J Ther Ultrasound 1:10. https://doi.org/10.1186/2050-5736-1-10

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen ZY, Lin Y, Yang F, Jiang L, Ge S (2013) Gene therapy for cardiovascular disease mediated by ultrasound and microbubbles. Cardiovasc Ultrasound 11:11. https://doi.org/10.1186/1476-7120-11-11

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wan C, Li F, Li H (2015) Gene therapy for ocular diseases meditated by ultrasound and microbubbles (Review). Mol Med Rep 12(4):4803–4814. https://doi.org/10.3892/mmr.2015.4054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ma J, Du LF, Chen M, Wang HH, Xing LX, Jing LF, Li YH (2013) Drug-loaded nano-microcapsules delivery system mediated by ultrasound-targeted microbubble destruction: a promising therapy method. Biomed Rep 1(4):506–510. https://doi.org/10.3892/br.2013.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was financially supported by the Natural Science Foundation of Hunan Province (Grant No. 2019JJ80080), Scientific Research Projects of Hunan Provincial Health Commission (Grant Nos. B2019062, 20200198), the Scientific Research Project of Hunan Provincial Education Department (Grant No. 20B357) and Key Project of Education Department of Hunan Province (Grant No. 21A0032).

Author information

Authors and Affiliations

Authors

Contributions

XZ and YH conceived and designed the study. YC, XL, and HC performed the experiments. ZZ and HP collected the data. JP, YL, and HW interpreted the results. YH contributed to the preparation, review, and revision of the manuscript. All authors agreed to be accountable for the content of the work.

Corresponding author

Correspondence to Yongjun Hu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 7793 KB)

Figure S1. UTMD treatment had no effect on cell viability or cell apoptosis. Cell viability in the control, control + UTMD, OGD, and OGD + UTMD group cells by the CCK-8 assay. (B) Cell apoptosis determined by the TUNEL assay. n = 3. Compared with control/control + UTMD, *p < 0.05.

Supplementary file2 (JPG 426 KB)

Figure S2. Validation results of transfection efficiency. qPCR assay results of miR-150-5p expression level after transfection with miR-NC or miR-150-5p mimic. n = 3. Compared with miR-NC, *p < 0.05. (B) TTC5 protein expression levels after transfection with pcDNA3.1-TTC5 (TTC5 group) or pcDNA3.1 (TTC5 vector group) determined by western blotting. n = 3. Compared with TTC5 vector, *p < 0.05.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Chen, Y., Long, X. et al. Ultrasound-targeted microbubble destruction (UTMD)-mediated miR-150-5p attenuates oxygen and glucose deprivation-induced cardiomyocyte injury by inhibiting TTC5 expression. Mol Biol Rep 49, 6041–6052 (2022). https://doi.org/10.1007/s11033-022-07392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07392-3

Keywords

Navigation