Skip to main content

Advertisement

Log in

The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease, Parkinson’s disease, prion diseases, schizophrenia, and multiple sclerosis are the most common nervous system diseases, affecting millions of people worldwide. The current scientific literature associates these pathological conditions to abnormal expression levels of certain proteins, which in turn improved the knowledge concerning normal and affected brains. However, there is no available cure or preventive therapy for any of these disorders. Proteogenomics is a recent approach defined as the data integration of both nucleotide high-throughput sequencing and protein mass spectrometry technologies. In the last years, proteogenomics studies in distinct diseases have emerged as a strategy for the identification of uncharacterized proteoforms, which are all the different protein forms derived from a single gene. For many of these diseases, at least one protein used as biomarker presents more than one proteoform, which fosters the analysis of publicly available data focusing proteoforms. Given this context, we describe the most important biomarkers for each neurodegenerative disease and how genomics, transcriptomics, and proteomics separately contributed to unveil them. Finally, we present a selection of proteogenomics studies in which the combination of nucleotide and proteome high-throughput data, from cell lines or brain tissue samples, is used to uncover proteoforms not previously described. We believe that this new approach may improve our knowledge about nervous system diseases and brain function and an opportunity to identify new biomarker candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeliovich A, Gitler AD (2016) Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539(7628):207–216

    PubMed  Google Scholar 

  • Aikawa T, Holm M, Kanekiyo T (2018) ABCA7 and pathogenic pathways of Alzheimer’s disease. Brain Sci 8:27

    PubMed Central  Google Scholar 

  • Altamura C, Fagiolini A, Galderisi S, Rocca P, Rossi A (2014) Schizophrenia today: epidemiology, diagnosis, course and models of care. J Psychopathol 20:223–243

    Google Scholar 

  • Alzheimer’s Association (2018) Alzheimer’s disease facts and figures. Alzheimers Dement 14(3):367–429

    Google Scholar 

  • Amoroso N, Monaco A, Tangaro S, Neuroimaging Initiative AD (2017) Topological measurements of DWI tractography for Alzheimer’s disease detection. Comput Math Methods Med 2017:5271627

    PubMed  PubMed Central  Google Scholar 

  • Andreev VP, Petyuk VA, Brewer HM, Karpievitch YV, Xie F, Clarke J, Camp D, Smith RD, Lieberman AP, Albin RL, Nawaz Z, Hokayem JE, Myers AJ (2012) Label-free quantitative LC-MS proteomics of Alzheimer’s disease and normally aged human brains. J Proteome Res 11(6):3053–3067

    CAS  PubMed  PubMed Central  Google Scholar 

  • Athanasiu L, Giddaluru S, Fernandes C, Christoforou A, Reinvang I, Lundervold AJ, Nilsson LG, Kauppi K, Adolfsson R, Eriksson E, Sundet K, Djurovic S, Espeseth T, Nyberg L, Steen VM, Andreassen OA, Le Hellard S (2017) A genetic association study of CSMD1 and CSMD2 with cognitive function. Brain Behav Immun 61:209–216

    CAS  PubMed  Google Scholar 

  • Bader V, Tomppo L, Trossbach SV, Bradshaw NJ, Prikulis I, Leliveld SR, Lin C, Ishizuka K, Sawa A, Ramos A, Rosa I, Garćıa A, Requena JR, Hipolito M, Rai N, Nwulia E, Henning U, Ferrea S, Luckhaus C, Ekelund J, Veijola J, Jarvelin M, Hennah W, Korth C (2012) Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Hum Mol Genet 21(20):4406–4418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai B, Hales CM, Chen P, Gozal Y, Dammer EB, Fritz JJ (2013) U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci 110(41):16562–16567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa EB, Vidotto A, Polachini GM, Henrique T, Marqui ABT, Tajara EH (2012) Proteômica: metodologias e aplicações no estudo de doenças humanas. Rev Assoc Med Bras 58(3):366–375

    PubMed  Google Scholar 

  • Batzoglou S, Pachter L, Mesirov JP, Berger B, Lander ES (2000) Human and mouse gene structure: comparative analysis and application to exon prediction. Genome Res 10(7):950–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cacace R, Van den Bossche T, Engelborghs S, Geerts N, Laureys A et al (2015) Rare variants in PLD3 do not affect risk for early-onset Alzheimer disease in a European Consortium Cohort. Hum Mutat 36(12):1226–1235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canter RG, Penney J, Tsai LH (2016) The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 539(7628):187–196

    PubMed  Google Scholar 

  • Cardno AG, Gottesman II (2002) Twin studies of schizophrenia: from bow-and-arrow concordances to Star Wars Mx and functional genomics. Am J Med Genet 97(1):12–17

    Google Scholar 

  • Chang RYK, Nouwens AS, Dodd PR, Etheridge N (2013) The synaptic proteome in Alzheimer’s disease. Alzheimers Dement 9:499–511

    PubMed  Google Scholar 

  • Chatterjee P, Roy D (2017) Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson’s disease. Biochem Biophys Res Commun 484(3):557–564

    CAS  PubMed  Google Scholar 

  • Chavan BS, Kaur G, Gupta D, Aneja J (2018) A prospective study to evaluate the effect of CYP2D6 polymorphism on plasma level of risperidone and its metabolite in North Indian patients with schizophrenia. Indian J Psychol Med 40(4):335–342

    PubMed  PubMed Central  Google Scholar 

  • Cherra SJ, Steer E, Gusdon AM, Kiselyov K, Chu CT (2013) Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am J Pathol 182(2):474–484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cognata V, D’Agata V, Cavalcanti F, Cavallaro S (2015) Splicing: is there an alternative contribution to Parkinson’s disease? Neurogenetics 16:245–263

    PubMed  PubMed Central  Google Scholar 

  • Comabella M, Fernandez M, Martin R, Rivera-Vallve S, Borrás E, Chiva C, Julia E, Rovira A, Cantó E, Alvarez-Cermeño JC, Villar LM, Tintoré M, Montalban X (2010) Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain 133(Pt 4):1082–1093

    PubMed  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    CAS  PubMed  Google Scholar 

  • Davis KN, Tao R, Li C, Gao Y, Gondré-Lewis MC, Lipska BK et al (2016) GAD2 alternative transcripts in the human prefrontal cortex, and in schizophrenia and affective disorders. PLoS One 11(2):1–15

    CAS  Google Scholar 

  • Del Re M, Rofi E, Citi V, Fidilio L, Danesi R (2016) Should CYP2D6 be genotyped when treating with tamoxifen? Pharmacogenomics 17(18):1967–1969

    PubMed  Google Scholar 

  • Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221

    CAS  PubMed  Google Scholar 

  • Elliott DA, Kim WS, Gorissen S, Halliday GM, Kwok JBJ (2012) Leucine-rich repeat kinase 2 and alternative splicing in Parkinson’s disease. Mov Disord 27(8):1004–1011

    CAS  PubMed  Google Scholar 

  • English JA, Pennington K, Dunn MJ, Cotter DR (2011) The neuroproteomics of schizophrenia. Biol Psychiatry 69:163–172

    CAS  PubMed  Google Scholar 

  • Erkkinen MG, Kim MO, Geschwind MD (2018) Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol 10(4):a033118

  • Fagnani M, Barash Y, Ip JY, Misquitta C, Pan Q, Saltzman AL, Shai O, Lee L, Rozenhek A, Mohammad N, Willaime-Morawek S, Babak T, Zhang W, Hughes TR, van der Kooy D, Frey BJ, Blencowe BJ (2007) Functional coordination of alternative splicing in the mammalian central nervous system. Genome Biol 8:R108

    PubMed  PubMed Central  Google Scholar 

  • Falkai P, Steiner J, Malchow B, Shariati J, Knaus A, Bernstein H-G et al (2016) Oligodendrocyte and interneuron density in hippocampal subfields in schizophrenia and association of oligodendrocyte number with cognitive deficits. Front Cell Neurosci 10:78

    PubMed  PubMed Central  Google Scholar 

  • Galasko D, Golde TE (2013) Biomarkers for Alzheimer’s disease in plasma, serum and blood – conceptual and practical problems. Alzheimers Res Ther 5:10

    PubMed  PubMed Central  Google Scholar 

  • Ganfornina MD, Do Carmo S, Martinez E, Tolivia J et al (2010) ApoD, a glia-derived apolipoprotein, is required for peripheral nerve functional integrity and a timely response to injury. Glia 58:1320–1334

    PubMed  PubMed Central  Google Scholar 

  • Gitler AD, Dhillon P, Shorter J (2017) Neurodegenerative disease: models, mechanisms, and a new hope. Dis Model Mech 10(5):499–502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3):885–890

    CAS  PubMed  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17(6):333–351

    CAS  PubMed  Google Scholar 

  • Grothe MJ, Barthel H, Sepulcre J, Dyrba M, Sabri O, Teipel SJ (2017) Alzheimer’s disease neuroimaging initiative. In vivo staging of regional amyloid deposition. Neurology 89(20):2031–2038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guipponi M, Santoni FA, Setola V, Gehrig C, Rotharmel M, Cuenca M, Guillin O, Dikeos D, Georgantopoulos G, Papadimitriou G, Curtis L, Méary A, Schürhoff F, Jamain S, Avramopoulos D, Leboyer M, Rujescu D, Pulver A, Campion D, Siderovski DP, Antonarakis SE (2014) Exome sequencing in 53 sporadic cases of schizophrenia identifies 18 putative candidate genes. PLoS One 9(11):e112745

    PubMed  PubMed Central  Google Scholar 

  • Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, De Jager PL, de Bakker PI, Gabriel SB, Mirel DB, Ivinson AJ, Pericak-Vance MA, Gregory SG, Rioux JD, McCauley JL, Haines JL, Barcellos LF, Cree B, Oksenberg JR, Hauser SL (2007) Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 357(9):851–62

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    CAS  PubMed  Google Scholar 

  • Harper A (2010) Mouse models of neurological disorders—a comparison of heritable and acquired traits. Biochim Biophys Acta 1802(10):785–795

    CAS  PubMed  Google Scholar 

  • Herculano-Houzel S, Watson C, Paxinos G (2013) Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front Neuroanat 7:35

    PubMed  PubMed Central  Google Scholar 

  • Ho Kim J, Franck J, Kang T, Heinsen H, Ravid R, Ferrer I, Cheon MH, Lee J, Yoo JS, Steinbusch HW, Salzet M, Fournier I, Park YM (2015) Proteome-wide characterization of signalling interactions in the hippocampal CA4/DG subfield of patients with Alzheimer’s disease. Sci Rep 5:11138

  • Hoya S, Watanabe Y, Hishimoto A, Nunokawa A, Kaneko N, Muratake T, Shinmyo N, Otsuka I, Okuda S, Inoue E, Igeta H, Shibuya M, Egawa J, Orime N, Sora I, Someya T (2017) Rare PDCD11 variations are not associated with risk of schizophrenia in Japan. Psychiatry Clin Neurosci 71(11):780–788

    CAS  PubMed  Google Scholar 

  • Hug N, Longman D, Caceres JF (2016) Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 44(4):1483–1495

    PubMed  PubMed Central  Google Scholar 

  • Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y (2004) Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci U S A 101(17):6623–6628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Infante J, Prieto C, Sierra M, Sánchez-Juan P, González-Aramburu I, Sánchez-Quintana C et al (2016) Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S-associated Parkinson’s disease. Neurobiol Aging 38:214.e1–214.e5

    CAS  Google Scholar 

  • Jang H, Kim TW, Yoon S, Choi SY, Kang TW, Kim SY, Kwon YW, Cho EJ, Youn HD (2012) O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 11(1):62–74

    CAS  PubMed  Google Scholar 

  • Johnson ECB, Dammer EB, Duong DM, YinL TM, Troncoso JC, Lah JJ, Levey AI, Seyfried NT (2018) Deep proteomic network analysis of Alzheimer’s disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Mol Neurodegener 13:52

    PubMed  PubMed Central  Google Scholar 

  • Jovičić A, Mertens J, Boeynaems S, Bogaert E, Chai N, Yamada SB, Paul JW, Sun S, Herdy JR, Bieri G, Kramer NJ, Gage FH, Van Den Bosch L, Robberecht W, Gitler AD (2015) Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat Neurosci 18(9):1226–1229

    PubMed  PubMed Central  Google Scholar 

  • Kelleher NL (2012) A cell-based approach to the human proteome project. J Am Soc Mass Spectrom 23(10):1617–24

  • Kempf S, Metaxas A, Vea MI, Finsen B, Darvesh S, Larsen MR (2016) An integrated proteomics approach shows synaptic plasticity changes in an APP/PS1 Alzheimer’s mouse model. OncoTarget 16:1–21

    Google Scholar 

  • Khoonsari PE, Häggmark A, Lönnberg M, Mikus M, Kilander L, Lannfelt L, Bergquist J, Ingelsson M, Nilsson P, Kultima K, Shevchenko G (2016) Analysis of the cerebrospinal fluid proteome in Alzheimer’s disease. PLoS One 11(3):e0150672

    PubMed  PubMed Central  Google Scholar 

  • Klerk E, Hoen PAC (2015) Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet 31(3):128–139

    PubMed  Google Scholar 

  • Korolainen MA, Nyman TA, Aittokallio T, Pirttilä T (2010) An update on clinical proteomics in Alzheimer’s research. J Neurochem 112(6):1386–1414

    CAS  PubMed  Google Scholar 

  • Kosik KS (1990) Tau protein and neurodegeneration. Mol Neurobiol 4(3–4):171–179

    CAS  PubMed  Google Scholar 

  • Kroksveen AC, Guldbrandsen A, Vedeler C, Myhr KM, Opsahl JA, Berven FS (2012) Cerebrospinal fluid proteome comparison between multiple sclerosis patients and controls. Acta Neurol Scand 126(195):90–96

    Google Scholar 

  • Kumar R, McLain D, Young R, Carlson GA (2008) Cholesterol transporter ATP-binding cassette A1 (ABCA1) is elevated in prion disease and affects PrPC and PrPSc concentrations in cultured cells. J Gen Virol 89(Pt 6):1525–1532

    CAS  PubMed  Google Scholar 

  • Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI (2016) Protein aggregation and neurodegenerative diseases: from theory to therapy. Eur J Med Chem 124:1105–1120

    CAS  PubMed  Google Scholar 

  • Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W et al (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128:2705–2712

    PubMed  Google Scholar 

  • Lahut S, Gispert S, Ömür Ö, Depboylu C, Seidel K, Domínguez-Bautista JA et al (2017) Blood RNA biomarkers in prodromal PARK4 and rapid eye movement sleep behavior disorder show role of complexin 1 loss for risk of Parkinson’s disease. Dis Model Mech 10(5):619–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lane CA, Hardy, Schott JM (2017) Alzheimer’s disease. Eur J Neurol 25:59–70

    PubMed  Google Scholar 

  • Le K, Prabhakar BS, Hong W, Li L (2015) Alternative splicing as a biomarker and potential target for drug discovery. Acta Pharmacol Sin 36(10):1212–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, McKinney KQ, Pavlopoulos AJ, Han MH, Kim S, Kim HJ, Hwang S (2016) Exosomal proteome analysis of cerebrospinal fluid detects biosignatures of neuromyelitis optica and multiple sclerosis. Clin Chim Acta 462:118–126

    CAS  PubMed  Google Scholar 

  • Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28(2):325–334

    CAS  PubMed  Google Scholar 

  • Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, Chen Q, Li C, Jia Y, Ohi K, Maher BJ, Brandon NJ, Cross A, Chenoweth JG, Hoeppner DJ, Wei H, Hyde TM, McKay R, Kleinman JE, Weinberger DR (2016a) A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med 22(6):649–656

    CAS  PubMed  Google Scholar 

  • Li Y, Wang X, Cho J, Shaw T, Wu Z, Bai B, Wang H, Zhou S, Beach TG, Wu G, Zhang J, Peng J (2016b) JUMPg: an integrative proteogenomics pipeline identifying unannotated proteins in human brain and cancer cells. J Proteome Res 15(7):2309–2320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipscombe D (2005) Neuronal proteins custom designed by alternative splicing. Curr Opin Neurobiol 15(3):358–363

    CAS  PubMed  Google Scholar 

  • Lisitsa A, Moshkovskii S, Chernobrovkin A, Ponomarenko E, Archakov A (2014) Profiling proteoforms: promising follow-up of proteomics for biomarker discovery. Expert Rev Proteomics 11(1):121–129

    CAS  PubMed  Google Scholar 

  • Liu F, Gong C (2008) Tau exon 10 alternative splicing and tauopathies. Mol Neurodegener 3(8):1–10

    CAS  Google Scholar 

  • Liu C, Kanekiyo T, XuH BG (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms, and therapy. Nat Rev Neurol 9(2):106–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Qing H, Deng Y (2014) Biomarkers in Alzheimer’s disease analysis by mass spectrometry-based proteomics. Int J Mol Sci 15(5):7865–7882

    PubMed  PubMed Central  Google Scholar 

  • Luneau CJ, Williams JB, Marshall J, Levitan ES, Oliva C, Smith JS, Antanavage J, Folander K, Stein RB, Swanson R (1991) Alternative splicing contributes to K+ channel diversity in the mammalian central nervous system. Proc Natl Acad Sci 88(9):3932–3936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahurkar S, Moldovan M, Suppiah V, Sorosina M, Clarelli F, Liberatore G, Malhotra S, Montalban X, Antigüedad A, Krupa M, Jokubaitis VG, McKay FC, Gatt PN, Fabis-Pedrini MJ, Martinelli V, Comi G, Lechner-Scott J, Kermode AG, Slee M, Taylor BV, Vandenbroeck K, Comabella M, Boneschi FM (2017) Response to interferon-beta treatment in multiple sclerosis patients: a genome-wide association study. Pharmacogenomics J 17(4):312–318

  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marton RM, Paşca SP (2016) Neural differentiation in the third dimension: generating a human midbrain. Cell Stem Cell 19(2):145–146

    CAS  PubMed  Google Scholar 

  • May P, Pichler S, Hartl D, Bobbili DR, Mayhaus M, Spaniol C, Kurz A, Balling R, Schneider JG, Riemenschneider M (2018) Rare ABCA7 variants in 2 German families with Alzheimer disease. Neurol Genet 4(2):e224

    PubMed  PubMed Central  Google Scholar 

  • Mehrabian M, Brethour D, Williams D, Wang H, Xi Z, Rogaeva E, Schmitt-Ulms G (2016) The prion protein controls polysialylation of neural cell adhesion molecule 1 during cellular morphogenesis. PLoS One 10(8):e0133741

  • Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B (2011) Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 70(7):663–671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mills JD, Nalpathamkalam T, Jacobs HIL, Janitz C, Merico D, Hu P et al (2013) RNA-Seq analysis of the parietal cortex in Alzheimer’s disease reveals alternatively spliced isoforms related to lipid metabolism. Neurosci Lett 536:90–95

    CAS  PubMed  Google Scholar 

  • Milo R, Miller A (2014) Revised diagnostic criteria of multiple sclerosis. Autoimmun 13(4–5):518–524

    Google Scholar 

  • Minjarez B, Calderón-González KG, Rustarazo MLV, Herrera-Aguirre ME, Labra-Barrios ML, Rincon-Limas DE, Pino MMS, Mena R, Luna-Arias JP (2016) Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer’s disease. Data Brief 7:1707–1719

    PubMed  PubMed Central  Google Scholar 

  • Morgan C, Inestrosa NC (2001) Interactions of laminin with the amyloid ß peptide. Implications for Alzheimer’s disease. Braz J Med Biol Res 34:597–560

    CAS  PubMed  Google Scholar 

  • Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298

    PubMed  PubMed Central  Google Scholar 

  • Nascimento J, Martins-de-Souza D (2015) The proteome of schizophrenia. NPJ Schizophr 4:1–11

    Google Scholar 

  • Nesvizhskii AI (2014) Proteogenomics: concepts, applications and computational strategies. Nat Methods 11(11):1114–1125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nesvizhskii J, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4(10):1419–1440

    CAS  PubMed  Google Scholar 

  • Neuner SM, Wilmott LA, Hoffmann BR, Mozhui K, Kaczorowski CC (2017) Hippocampal proteomics defines pathways associated with memory decline and resilience in normal aging and Alzheimer’s disease mouse models. Behav Brain Res 322:288–298

    CAS  PubMed  Google Scholar 

  • Nho K, Horgusluoglu E, Kim S, Risacher SL, Kim D, Foroud T, Aisen PS, Petersen RC, Jack CR, Shaw LM, Trojanowski JQ, Weiner MW, Green RC, Toga AW, Saykin AJ (2016) Integration of bioinformatics and imaging informatics for identifying rare PSEN1 variants in Alzheimer’s disease. BMC Med Genet 12:9

    Google Scholar 

  • Nichols WC, Pankratz N, Marek DK, Pauciulo MW, Elsaesser VE, Halter CA, Rudolph A, Wojcieszek J, Pfeiffer RF, Foroud T (2009) Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. Neurology 72(4):310–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson P, Loganathan K, Sekiguchi M, Winblad B, Iwata N, Saido TC et al (2015) Loss of neprilysin alters protein expression in the brain of Alzheimer’s disease model mice. Proteom 15(19):3349–3355

    CAS  Google Scholar 

  • Nussbaum (1998) Putting the parkin into Parkinson’s. Nature 392(6676):544–545

    CAS  PubMed  Google Scholar 

  • Nussbaum RL, Polymeropoulos MH (1997) Genetics of Parkinson’s disease. Hum Mol Genet 6(10):1687–1691

    CAS  PubMed  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421

    CAS  PubMed  Google Scholar 

  • Ojopi EPB, Bertoncini AB, Neto ED (2004) Apolipoproteína E e a doença de Alzheimer. Rev Psiquiatr Clín 31(1):26–33

    Google Scholar 

  • Pagliarini V, La Rosa P, Sette C (2017) Faulty RNA splicing: consequences and therapeutic opportunities in brain and muscle disorders. Hum Genet 136:1215–1235

    CAS  PubMed  Google Scholar 

  • Palomino-Alonso M, Lachén-Montes M, González-Morales A, Ausín K, Pérez-Mediavilla A, Fernández-Irigoyen J, Santamaría E (2017) Network-driven proteogenomics unveils an aging-related imbalance in the olfactory IκBα-NFκB p65 complex functionality in Tg2576 Alzheimer’s disease mouse model. Int J Mol Sci 18(11):2260

    PubMed Central  Google Scholar 

  • Pan C, Zhou Y, Dator R, Ginghina C, Zhao Y, Movius J, Peskind E, Zabetian CP, Quinn J, Galasko D, Stewart T, Shi M, Zhang J (2014) Targeted discovery and validation of plasma biomarkers of Parkinson’s disease. J Proteome Res 13(11):4535–4545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panwar B, Menon R, Eksi R, Li H, OmennGS GY (2016) Genome-wide functional annotation of human protein-coding splice variants using multiple instance learning. J Proteome Res 15(6):1747–1753

    CAS  PubMed  Google Scholar 

  • Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, Kim CH, Park JY, O'Rourke NA, Nguyen KD, Smith SJ, Huguenard JR, Geschwind DH, Barres BA, Paşca SP (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods 12(7):671–678

    PubMed  PubMed Central  Google Scholar 

  • Passetti F, Ferreira CG, Costa FF (2009) The impact of microRNAs and alternative splicing in pharmacogenomics. Pharmacogenomics J 9(1):1–13

    CAS  PubMed  Google Scholar 

  • Petzold A (2013) Intrathecal oligoclonal IgG synthesis in multiple sclerosis. J Neuroimmunol 262(1–2):1–10

    CAS  PubMed  Google Scholar 

  • Prusiner SB, McKinley MP, Groth DF, Bowman KA, Mock NI, Cochran SP, Masiarz FR (1981) Scrapie agent contains a hydrophobic protein. Proc Natl Acad Sci U S A 78(11):6675–6679

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reindl M, Knipping G, Wicher I, Dilitz E, Egg R, Deisenhammer F, Berger T (2001) Increased intrathecal production of apolipoprotein D in multiple sclerosis. J Neuroimmunol 199(2):327–332

    Google Scholar 

  • Rosenthal N, Brown S (2007) The mouse ascending: perspectives for human-disease models. Nat Cell Biol 9(9):993–999

    CAS  PubMed  Google Scholar 

  • Rosenthal SL, Kamboh MI (2014) Late-onset Alzheimer’s disease genes and the potentially implicated pathways. Curr Genet Med Rep 2:85–101

    PubMed  PubMed Central  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10–S17

    PubMed  Google Scholar 

  • Rossi P, Buggia-Prévot V, Clayton BLL, Vasquez JB, van Sanford C, Andrew RJ et al (2016) Predominant expression of Alzheimer’s disease-associated BIN1 in mature oligodendrocytes and localization to white matter tracts. Mol Neurodegener 11(1):59

    PubMed  PubMed Central  Google Scholar 

  • Ruiz-Martínez J, Azcona LJ, Bergareche A, Martí-Massó JF, Paisán-Ruiz C (2017) Whole-exome sequencing associates novel CSMD1 gene mutations with familial Parkinson disease. Neurol Genet 3(5):e177

    PubMed  PubMed Central  Google Scholar 

  • Saia-Cereda VM, Cassoli JS, Schmitt A, Falkai P, Nascimento JM, Martins-de-Souza D (2015) Proteomics of the corpus callosum unravel pivotal players in the dysfunction of cell signaling, structure, and myelination in schizophrenia brains. Eur Arch Psychiatry Clin Neurosci 265:601–612

    PubMed  Google Scholar 

  • Saini SM, Mancuso SG, Mostaid MS et al (2017) Meta-analysis supports GWAS-implicated link between GRM3 and schizophrenia risk. Transl Psychiatry 7(8):e1196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz SW, Mhyre T, Ressom H, Shah S, Federoff HJ (2012) Genomics and bioinformatics of Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009449

    PubMed  PubMed Central  Google Scholar 

  • Schondorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B, Sardi BP, Valsecchi M, Hoffmann S, Schwarz LK, Hedrich U, Berg D, Shihabuddin LS, Hu J, Pruszak J, Gygi SP, Sonnino S, Gasser T, Deleidi M (2014) iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 5:4028

    PubMed  Google Scholar 

  • Schubert KO, Föcking M, Cotter DR (2015) Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res 167:64–72

    PubMed  Google Scholar 

  • Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 2:1–16

    Google Scholar 

  • Shen L, Liao L, Chen C, Guo Y, Song D, Wang Y, Chen Y, Zhang K, Ying M, Li S, Liu Q, Ni J (2017) Proteomics analysis of blood serums from Alzheimer’s disease patients using iTRAQ labeling technology. J Alzheimers Dis 56(1):361–378

    CAS  PubMed  Google Scholar 

  • Sheynkman GM, Shortreed MR, Cesnik AJ, Smith LM (2016) Proteogenomics: integrating next-generation sequencing and mass spectrometry to characterize human proteomic variation. Annu Rev Anal Chem 9:521–545

    Google Scholar 

  • Shi Q, Chen L, Zhang B, Xiao K, Zhou W, Chen C, Zhang X, Tian C, Gao C, Wang J, Han J, Dong X (2015) Proteomics analyses for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics 14(4):854–869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair D, Webster MJ, Fullerton JM, Weickert CS (2012) Glucocorticoid receptor mRNA and protein isoform alterations in the orbitofrontal cortex in schizophrenia and bipolar disorder. BMC Psychiatry 12:84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DJ (2009) Mitochondrial dysfunction in mouse models of Parkinson's disease revealed by transcriptomics and proteomics. J Bioenerg Biomembr 41(6):487–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LM, Kelleher NL, The Consortium for Top Down Proteomics (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H et al (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 10(3):e1003517

    PubMed  PubMed Central  Google Scholar 

  • Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, Wachter S, Lorentzen E, Duddy G, Wilson S, Baptista MAS, Fiske BK, Fell MJ, Morrow JA, Reith AD, Alessi DR, Mann M (2016) Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. eLife 5:e12813

    PubMed  PubMed Central  Google Scholar 

  • Stępnicki P, Kondej M, Kaczor AA (2018) Current concepts and treatments of schizophrenia. Molecules 23(8):E2087

  • Stocker H, Möllers T, Perna L, Brenner H (2018) The genetic risk of Alzheimer’s disease beyond APOE ε4: systematic review of Alzheimer’s genetic risk scores. Transl Psychiatry 8:166

    PubMed  PubMed Central  Google Scholar 

  • Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5(6):463–466

    PubMed  PubMed Central  Google Scholar 

  • Tagawa K, Homma H, Saito A, Fujita K, Chen X, Imoto S, Oka T, Ito H, Motoki K, Yoshida C, Hatsuta H, Murayama S, Iwatsubo T, Miyano S, Okazawa H (2015) Comprehensive phosphoproteome analysis unravels the core signaling network that initiates the earliest synapse pathology in preclinical Alzheimer’s disease brain. Hum Mol Genet 24(2):540–558

    CAS  PubMed  Google Scholar 

  • Tao X, Tong L (2003) Crystal structure of human DJ-1, a protein associated with early onset Parkinson's disease. J Biol Chem 278(33):31372–31379

    CAS  PubMed  Google Scholar 

  • Tavares R, Scherer NM, Ferreira CG, Costa FF, Passetti F (2015) Splice variants in the proteome: a promising and challenging field to targeted drug discovery. Drug Discov Today 20(3):353–360

    CAS  PubMed  Google Scholar 

  • Tavares R, Wajnberg G, Scherer NDM, Pauletti BA, Cassoli JS, Ferreira CG et al (2017) Unveiling alterative splice diversity from human oligodendrocyte proteome data. J Proteome 151:293–301

    CAS  Google Scholar 

  • Tokay T, Hachem R, Masmoudi-Kouki O, Gandolfo P, Desrues L, Leprince J et al (2008) Beta-amyloid peptide stimulates endozepine release in cultured rat astrocytes through activation of N-formyl peptide receptors. Glia 56(13):1380–1389

    PubMed  Google Scholar 

  • Torres M, Cartier L, Matamala JM, Hernández N, Woehlbier U, Hetz C (2012) Altered Prion protein expression pattern in CSF as a biomarker for Creutzfeldt-Jakob disease. PLoS One 7(4):e36159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124(8):901–905

    PubMed  Google Scholar 

  • Vagnoni A, Perkinton MS, Gray EH, Francis PT, Noble W, Miller CCJ (2012) Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Ab production. Hum Mol Genet 21(13):2845–2854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verheijen J, Sleegers K (2018) Understanding Alzheimer disease at the interface between genetics and transcriptomics. Trends Genet 34(6):434–447

    CAS  PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu F (2008) Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 85:148–175

    CAS  PubMed  Google Scholar 

  • Wang ES, Yao HB, Chen YH, Wang G, Gao WW, Sun YR, Guo JG, Hu JW, Jiang CC, Hu J (2013) Proteomic analysis of the cerebrospinal fluid of Parkinson’s disease patients pre- and post-deep brain stimulation. Cell Physiol Biochem 31:625–637

    PubMed  Google Scholar 

  • Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Cedarbaum J, Green RC, Harvey D, Jack CR, Jagust W, Luthman J, Morris JC, Petersen RC, Saykin AJ, Shaw L, Shen L, Schwarz A, Toga AW, Trojanowski JQ, Alzheimer’s Disease Neuroimaging Initiative (2015) 2014 update of the Alzheimer’s disease neuroimaging initiative: a review of papers published since its inception. Alzheimers Dement 11(6):e1–e120

    PubMed  PubMed Central  Google Scholar 

  • Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. https://doi.org/10.12688/f1000research.14506.1

  • Wijte D, McDonnell LA, Balog CIA, Bossers K, Deelder AM, Swaab DF, Verhaagen J, Mayboroda OA (2012) A novel peptidomics approach to detect markers in cerebrospinal fluid of Alzheimer’s disease samples. Methods 56:500–507

    CAS  PubMed  Google Scholar 

  • Xie J, Black DL (2001) A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410(6831):936–939

  • Yeo G, Holste D, Kreiman G, Burge CB (2004) Variation in alternative splicing across human tissues. Genome Biol 5:R74

    PubMed  PubMed Central  Google Scholar 

  • Zhan YY, Liang BQ, Wang H, Wang ZH, Weng QH, Dai DP, Cai JP, Hu GX (2016) Effect of CYP2D6 variants on venlafaxine metabolism in vitro. Xenobiotica 46(5):424–429

    CAS  PubMed  Google Scholar 

  • Zhao J, O’Connor T, Vassar R (2011) The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation 8:150

Download references

Funding

This work was supported by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Passetti.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nery, T.G.M., Silva, E.M., Tavares, R. et al. The Challenge to Search for New Nervous System Disease Biomarker Candidates: the Opportunity to Use the Proteogenomics Approach. J Mol Neurosci 67, 150–164 (2019). https://doi.org/10.1007/s12031-018-1220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1220-1

Keywords

Navigation