Skip to main content

Advertisement

Log in

Unrestricted Somatic Stem Cells Loaded in Nanofibrous Conduit as Potential Candidate for Sciatic Nerve Regeneration

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Motor and sensory recovery following critical size peripheral nerve defects is often incomplete. Although nerve grafting has been proposed as the gold standard, it is associated with several disadvantages. Here we report a novel approach to peripheral nerve repair using Human Unrestricted Somatic Stem Cells (USSC) delivered through an electrospun neural guidance conduit. Conduits were produced from PCL and gelatin blend. Several in vitro methods were utilized to investigate the conduit’s physicochemical and biological characteristics. Nerve regeneration was studied across a 10-mm sciatic nerve gap in Wistar rats. For functional analysis, the conduits were seeded with 3 × 104 USSCs and implanted into a 10-mm sciatic nerve defect. After 14 weeks, the results of functional recovery analysis and histopathological examinations showed that animals implanted with USSC containing conduits exhibited improved functional and histopathological recovery which was more close to the autograft group compared to other groups. Our results support the potential applicability of USSCs to treat peripheral nerve injury in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmadbeigi N, Seyedjafari E, Gheisari Y, Atashi A, Omidkhoda A, Soleimani M (2010) Surface expression of CXCR4 in unrestricted somatic stem cells and its regulation by growth factors. Cell Biol Int 34(7):687–692

    Article  CAS  PubMed  Google Scholar 

  • Alberts B, et al (2002) The extracellular matrix of animals.

    Google Scholar 

  • Amer MH, Rose FRAJ, Shakesheff KM, Modo M, White LJ (2017) Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen Med 2(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Andaloussi SE et al (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357

    Article  CAS  Google Scholar 

  • Arien-Zakay H, Lecht S, Nagler A, Lazarovici P (2011) Neuroprotection by human umbilical cord blood-derived progenitors in ischemic brain injuries. Arch Ital Biol 149(2):233–245

    PubMed  Google Scholar 

  • Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433

    Article  CAS  PubMed  Google Scholar 

  • Bhattarai N, Li Z, Gunn J, Leung M, Cooper A, Edmondson D, Veiseh O, Chen MH, Zhang Y, Ellenbogen RG, Zhang M (2009) Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater 21(27):2792–2797

    Article  CAS  Google Scholar 

  • Binulal N et al (2014) PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed 25(4):325–340

    Article  CAS  PubMed  Google Scholar 

  • Bongso A, Fong CY, Gauthaman K (2008) Taking stem cells to the clinic: major challenges. J Cell Biochem 105(6):1352–1360

    Article  CAS  PubMed  Google Scholar 

  • Cao H, Liu T, Chew SY (2009) The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 61(12):1055–1064

    Article  CAS  PubMed  Google Scholar 

  • Chang H-I, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds, In Regenerative medicine and tissue engineering-cells and biomaterials. INTECH

  • Dai L-G, Huang G-S, Hsu S-h (2013) Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transplant 22(11):2029–2039

    Article  PubMed  Google Scholar 

  • Dastjerdi FV, Zeynali B, Tafreshi AP, Shahraz A, Chavoshi MS, Najafabadi IK, Vardanjani MM, Atashi A, Soleimani M (2012) Inhibition of GSK-3β enhances neural differentiation in unrestricted somatic stem cells. Cell Biol Int 36(11):967–972

    Article  CAS  PubMed  Google Scholar 

  • de Ruiter GC et al (2009) Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 26(2):E5

    Article  PubMed  PubMed Central  Google Scholar 

  • di Summa PG, Kingham PJ, Raffoul W, Wiberg M, Terenghi G, Kalbermatten DF (2010) Adipose-derived stem cells enhance peripheral nerve regeneration. J Plast Reconstr Aesthet Surg 63(9):1544–1552

    Article  PubMed  Google Scholar 

  • Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM (2015) Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells 7(1):11–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Faroni A et al (2015) Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 82:160–167

    Article  PubMed  CAS  Google Scholar 

  • Farzamfar S, Naseri-Nosar M, Ghanavatinejad A, Vaez A, Zarnani AH, Salehi M (2017) Sciatic nerve regeneration by transplantation of menstrual blood-derived stem cells. Mol Biol Rep 44(5):407–412

    Article  CAS  PubMed  Google Scholar 

  • Farzamfar S, Naseri-Nosar M, Vaez A, Esmaeilpour F, Ehterami A, Sahrapeyma H, Samadian H, Hamidieh AA, Ghorbani S, Goodarzi A, Azimi A, Salehi M (2018) Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose 25(2):1229–1238

    Article  CAS  Google Scholar 

  • Fauza DO, Bani M (eds) (2016) Fetal stem cells in regenerative medicine: Principles and translational strategies. Springer, 2016

  • Frostick SP, Yin Q, Kemp GJ (1998) Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18(7):397–405

    Article  CAS  PubMed  Google Scholar 

  • Fu W et al (2014) Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomedicine 9:2335

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao M, Lu P, Lynam D, Bednark B, Campana WM, Sakamoto J, Tuszynski M (2016) BDNF gene delivery within and beyond templated agarose multi-channel guidance scaffolds enhances peripheral nerve regeneration. J Neural Eng 13(6):066011

    Article  PubMed  Google Scholar 

  • Gautam S, Dinda AK, Mishra NC (2013) Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C 33(3):1228–1235

    Article  CAS  Google Scholar 

  • Ghasemi-Mobarakeh L, Semnani D, Morshed M (2007) A novel method for porosity measurement of various surface layers of nanofibers mat using image analysis for tissue engineering applications. J Appl Polym Sci 106(4):2536–2542

    Article  CAS  Google Scholar 

  • Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2008) Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34):4532–4539

    Article  CAS  PubMed  Google Scholar 

  • Ghodsizad A, Niehaus M, Kögler G, Martin U, Wernet P, Bara C, Khaladj N, Loos A, Makoui M, Thiele J, Mengel M, Karck M, Klein HM, Haverich A, Ruhparwar A (2009) Transplanted human cord blood-derived unrestricted somatic stem cells improve left-ventricular function and prevent left-ventricular dilation and scar formation after acute myocardial infarction. Heart 95(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Greschat S, Schira J, Küry P, Rosenbaum C, de Souza Silva MA, Kögler G, Wernet P, Müller HW (2008) Unrestricted somatic stem cells from human umbilical cord blood can be differentiated into neurons with a dopaminergic phenotype. Stem Cells Dev 17(2):221–232

    Article  CAS  PubMed  Google Scholar 

  • Hoque ME et al (2015) Gelatin based scaffolds for tissue engineering—a review. Polymers Res J 9(1):15

    Google Scholar 

  • Hu D, Hu R, Berde CB (1997) Neurologic evaluation of infant and adult rats before and after sciatic nerve blockade. Anesthesiology 86(4):957–965

    Article  CAS  PubMed  Google Scholar 

  • Huang Z-M, Zhang YZ, Ramakrishna S, Lim CT (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45(15):5361–5368

    Article  CAS  Google Scholar 

  • Ikehara S (2013) Grand challenges in stem cell treatments. Front Cell Dev Biol 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessen K, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7(7):a020487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang X, Mi R, Hoke A, Chew SY (2014) Nanofibrous nerve conduit-enhanced peripheral nerve regeneration. J Tissue Eng Regen Med 8(5):377–385

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Jones S, Jia X (2017) Stem cell transplantation for peripheral nerve regeneration: current options and opportunities. Int J Mol Sci 18(1):94

    Article  PubMed Central  CAS  Google Scholar 

  • Kehoe S, Zhang X, Boyd D (2012) FDA approved guidance conduits and wraps for peripheral nerve injury: a review of materials and efficacy. Injury 43(5):553–572

    Article  CAS  PubMed  Google Scholar 

  • Kemp SW, Walsh SK, Midha R (2008) Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair. Neurol Res 30(10):1030–1038

    Article  PubMed  Google Scholar 

  • Kögler G, Sensken S, Airey JA, Trapp T, Müschen M, Feldhahn N, Liedtke S, Sorg RV, Fischer J, Rosenbaum C, Greschat S, Knipper A, Bender J, Degistirici Ö, Gao J, Caplan AI, Colletti EJ, Almeida-Porada G, Müller HW, Zanjani E, Wernet P (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Kweon H, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS (2003) A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 24(5):801–808

    Article  CAS  PubMed  Google Scholar 

  • Lannutti J, Reneker D, Ma T, Tomasko D, Farson D (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C 27(3):504–509

    Article  CAS  Google Scholar 

  • Lee B-K, Ju YM, Cho JG, Jackson JD, Lee SJ, Atala A, Yoo JJ (2012) End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration. Biomaterials 33(35):9027–9036

    Article  CAS  PubMed  Google Scholar 

  • Lee J-Y, Giusti G, Wang H, Friedrich PF, Bishop AT, Shin AY (2013) Functional evaluation in the rat sciatic nerve defect model: a comparison of the sciatic functional index, ankle angles, and isometric tetanic force. Plast Reconstr Surg 132(5):1173–1180

    Article  CAS  PubMed  Google Scholar 

  • Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27(16):3115–3124

    Article  CAS  PubMed  Google Scholar 

  • Liao Y, Itoh M, Yang A, Zhu H, Roberts S, Highet AM, Latshaw S, Mitchell K, van de Ven C, Christiano A, Cairo MS (2014) Human cord blood-derived unrestricted somatic stem cells promote wound healing and have therapeutic potential for patients with recessive dystrophic epidermolysis bullosa. Cell Transplant 23(3):303–317

    Article  PubMed  Google Scholar 

  • Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30(12):2252–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L, Gan L, Liu Y, Tian W, Tong Z, Wang X, Huselstein C, Chen Y (2015) Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect. Biochem Biophys Res Commun 457(4):507–513

    Article  CAS  PubMed  Google Scholar 

  • Lv XM et al (2016) Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization. Neural Regen Res 11(4):652

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma F, Zhu T, Xu F, Wang Z, Zheng Y, Tang Q, Chen L, Shen Y, Zhu J (2017) Neural stem/progenitor cells on collagen with anchored basic fibroblast growth factor as potential natural nerve conduits for facial nerve regeneration. Acta Biomater 50:188–197

    Article  CAS  PubMed  Google Scholar 

  • Marín P (2016) Stem Cells and Regenerative Medicine. Handbook of translational medicine p. 109

  • Meng Z et al (2010) Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C 30(8):1204–1210

    Article  CAS  Google Scholar 

  • Miller C, Peek AL, Power D, Heneghan NR (2017) Psychological consequences of traumatic upper limb peripheral nerve injury: A systematic review. Hand Therapy 22(1):35–45

  • Mimeault M, Hauke R, Batra S (2007) Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82(3):252–264

    Article  CAS  PubMed  Google Scholar 

  • Mosahebi A, Fuller P, Wiberg M, Terenghi G (2002) Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol 173(2):213–223

    Article  CAS  PubMed  Google Scholar 

  • Muheremu A, Ao Q (2015) Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. Biomed Res Int 2015:1–6

    Article  CAS  Google Scholar 

  • Murakami S, Kitamura M, Yamada S, Takedachi M (2016) Emerging regenerative approaches for periodontal regeneration: from cytokine therapy to stem-cell therapy. Curr Issues Periodontics 5

  • Naseri-Nosar M, Farzamfar S, Sahrapeyma H, Ghorbani S, Bastami F, Vaez A, Salehi M (2017) Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: in vitro and in vivo evaluation. Mater Sci Eng C 81:366–372

    Article  CAS  Google Scholar 

  • Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506

    Article  CAS  PubMed  Google Scholar 

  • Parenteau-Bareil R, Gauvin R, Berthod F (2010) Collagen-based biomaterials for tissue engineering applications. Materials 3(3):1863–1887

    Article  CAS  PubMed Central  Google Scholar 

  • Peng S, Jin G, Li L, Li K, Srinivasan M, Ramakrishna S, Chen J (2016) Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. Chem Soc Rev 45(5):1225–1241

    Article  CAS  PubMed  Google Scholar 

  • Polymeri A, Giannobile W, Kaigler D (2016) Bone marrow stromal stem cells in tissue engineering and regenerative medicine. Horm Metab Res 48(11):700–713

    Article  CAS  PubMed  Google Scholar 

  • Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23(5):812–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi M, Naseri Nosar M, Amani A, Azami M, Tavakol S, Ghanbari H (2015) Preparation of pure PLLA, pure chitosan, and PLLA/chitosan blend porous tissue engineering scaffolds by thermally induced phase separation method and evaluation of the corresponding mechanical and biological properties. Int J Polym Mater Polym Biomater 64(13):675–682

    Article  CAS  Google Scholar 

  • Salehi M, Naseri‐Nosar M, Ebrahimi‐Barough S, Nourani M, Khojasteh A, Hamidieh AA et al (2017) Sciatic nerve regeneration by transplantation of Schwann cells via erythropoietin controlled‐releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit. J Biomater Mater Res B Appl Biomater

  • Sanen K, Martens W, Georgiou M, Ameloot M, Lambrichts I, Phillips J (2017) Engineered neural tissue with Schwann cell differentiated human dental pulp stem cells: potential for peripheral nerve repair? J Tissue Eng Regen Med 11(12):3362–3372

    Article  CAS  PubMed  Google Scholar 

  • Santourlidis S, Wernet P, Ghanjati F, Graffmann N, Springer J, Kriegs C, Zhao X, Brands J, Araúzo-Bravo MJ, Neves R, Koegler G, Uhrberg M (2011) Unrestricted somatic stem cells (USSC) from human umbilical cord blood display uncommitted epigenetic signatures of the major stem cell pluripotency genes. Stem Cell Res 6(1):60–69

    Article  CAS  PubMed  Google Scholar 

  • Sarasam A, Madihally SV (2005) Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials 26(27):5500–5508

    Article  CAS  PubMed  Google Scholar 

  • Schira J, Falkenberg H, Hendricks M, Waldera-Lupa DM, Kögler G, Meyer HE, Müller HW, Stühler K (2015) Characterization of regenerative phenotype of unrestricted somatic stem cells (USSC) from human umbilical cord blood (hUCB) by functional secretome analysis. Mol Cell Proteomics 14(10):2630–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz PH et al (2008) Differentiation of neural lineage cells from human pluripotent stem cells. Methods 45(2):142–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirzadeh E, Heidari Keshel S, Ezzatizadeh V, Jabbehdari S, Baradaran-Rafii A (2018) Unrestricted somatic stem cells, as a novel feeder layer: ex vivo culture of human limbal stem cells. J Cell Biochem 119(3):2666–2678

    Article  CAS  PubMed  Google Scholar 

  • Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006

    Article  CAS  PubMed  Google Scholar 

  • Sparling JS, Bretzner F, Biernaskie J, Assinck P, Jiang Y, Arisato H, Plunet WT, Borisoff J, Liu J, Miller FD, Tetzlaff W (2015) Schwann cells generated from neonatal skin-derived precursors or neonatal peripheral nerve improve functional recovery after acute transplantation into the partially injured cervical spinal cord of the rat. J Neurosci 35(17):6714–6730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan R, Dailey T, Duncan K, Abel N, Borlongan C (2016) Peripheral nerve injury: stem cell therapy and peripheral nerve transfer. Int J Mol Sci 17(12):2101

    Article  PubMed Central  CAS  Google Scholar 

  • Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15(2):82–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran PA, Hocking DM, O’Connor AJ (2015) In situ formation of antimicrobial silver nanoparticles and the impregnation of hydrophobic polycaprolactone matrix for antimicrobial medical device applications. Mater Sci Eng C 47:63–69

    Article  CAS  Google Scholar 

  • Tung W, Tam K, Chan Y, Shum D (eds) (2015) Nerve conduit constructed by aligned chitosan nanofibers for directing axonal growth in nerve regeneration. International Symposium on Healthy Aging

  • Wang S, Yaszemski MJ, Knight AM, Gruetzmacher JA, Windebank AJ, Lu L (2009) Photo-crosslinked poly (ε-caprolactone fumarate) networks for guided peripheral nerve regeneration: material properties and preliminary biological evaluations. Acta Biomater 5(5):1531–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W et al (2014) Craniocerebral injury promotes the repair of peripheral nerve injury. Neural Regen Res 9(18):1703–1708

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang G, Cao L, Wang Y, Hua Y, Cai Z, Chen J, Chen L, Jin Y, Niu L, Shen H, Lu Y, Shen Z (2017) Human eyelid adipose tissue-derived Schwann cells promote regeneration of a transected sciatic nerve. Sci Rep 7:43248

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu R, Yan Y, Yao J, Liu Y, Zhao J, Liu M (2015) Calpain 3 expression pattern during gastrocnemius muscle atrophy and regeneration following sciatic nerve injury in rats. Int J Mol Sci 16(11):26927–26935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, MacEwan MR, Schwartz AG, Xia Y (2010) Electrospun nanofibers for neural tissue engineering. Nanoscale 2(1):35–44

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Liu W, MacEwan MR, Bridgman PC, Xia Y (2014) Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 8(2):1878–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao R, He J, Meng G, Jiang B, Wu F (2016) Electrospun PCL/gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J Biomater Sci Polym Ed 27(9):824–838

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater 72(1):156–165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The present study was supported by Shahroud University of medical sciences. We hereby acknowledge the research deputy for grant No 97130138.

Availability of Data and Material

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript.

Corresponding author

Correspondence to Majid Salehi.

Ethics declarations

Ethics Approval and Consent to Participate

Animal experiments were approved by the ethics committee of the Shahroud University of Medical Sciences and were carried out in accordance with the university’s guidelines.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzamfar, S., Ehterami, A., Salehi, M. et al. Unrestricted Somatic Stem Cells Loaded in Nanofibrous Conduit as Potential Candidate for Sciatic Nerve Regeneration. J Mol Neurosci 67, 48–61 (2019). https://doi.org/10.1007/s12031-018-1209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1209-9

Keywords

Navigation