Skip to main content
Log in

Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the present study, gabapentin (GBP), an anticonvulsant drug used as an analgesic to control the neuropathic pains, was incorporated with cellulose acetate (CA) and gelatin (Gel) in order to develop a potential scaffold for neural tissue engineering applications. The wet-electrospinning method was used to produce the drug-loaded three-dimensional scaffolds from CA/Gel [1:1 (w/w)] solution in the water/ethanol (3:7) (v/v) coagulation baths containing 3%, 6% and 12% (w/v) of GBP. The scaffolds were evaluated regarding their morphology, contact angle, porosity, tensile strength and cellular response. The scaffold obtained from 6% (w/v) GBP bath was chosen as the optimum scaffold for further in vivo study in a sciatic nerve defect model in Wistar rats. The results of sciatic functional index, hot plate latency, weight-loss percentage of the wet gastrocnemius muscle and the histopathological examination using hematoxylin–eosin staining demonstrated that the GBP-containing scaffold significantly enhanced the regeneration of the created injury, which demonstrates its applicability for neural tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bini T, Gao S, Wang S, Lim A, Hai LB, Ramakrishna S (2004) Electrospun poly(l-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology 15:1459

    Article  CAS  Google Scholar 

  • Câmara CC, Ramos HF, da Silva AP, Araújo CV, Gomes AS, Vale ML, Barbosa ALR, Ribeiro RA, Brito GA, Costa CMC (2013) Oral gabapentin treatment accentuates nerve and peripheral inflammatory responses following experimental nerve constriction in Wistar rats. Neurosci Lett 556:93–98

    Article  Google Scholar 

  • Câmara CC, Araújo CV, de Sousa KKO, Brito GA, Vale ML, da Silva Raposo R, Mendonça FE, Mietto BS, Martinez AMB, Oriá RB (2015) Gabapentin attenuates neuropathic pain and improves nerve myelination after chronic sciatic constriction in rats. Neurosci Lett 607:52–58

    Article  Google Scholar 

  • Corobea MC, Muhulet O, Miculescu F, Antoniac IV, Vuluga Z, Florea D, Vuluga DM, Butnaru M, Ivanov D, Voicu SI (2016) Novel nanocomposite membranes from cellulose acetate and clay-silica nanowires. Polym Adv Technol 27:1586–1595

    Article  CAS  Google Scholar 

  • Dai LG, Huang GS, Hsu Sh (2013) Sciatic nerve regeneration by cocultured Schwann cells and stem cells on microporous nerve conduits. Cell Transplant 22:2029–2039

    Article  Google Scholar 

  • de Ruiter GC, Malessy MJ, Yaszemski MJ, Windebank AJ, Spinner RJ (2009) Designing ideal conduits for peripheral nerve repair. Neurosurg Focus 26:E5

    Article  Google Scholar 

  • Evans PJ, Mackinnon SE, Best TJ, Wade JA, Awerbuck DC, Makino AP, Hunter DA, Midha R (1995) Regeneration across preserved peripheral nerve grafts. Muscle Nerve 18:1128–1138

    Article  CAS  Google Scholar 

  • Farzamfar S, Naseri-Nosar M, Ghanavatinejad A, Vaez A, Zarnani AH, and Salehi M (2017) Sciatic nerve regeneration by transplantation of menstrual blood-derived stem cells molecular biology reports

  • Field MJ, Cox PJ, Stott E, Melrose H, Offord J, Su T-Z, Bramwell S, Corradini L, England S, Winks J (2006) Identification of the α2-δ-1 subunit of voltage-dependent calcium channels as a molecular target for pain mediating the analgesic actions of pregabalin. Proc Natl Acad Sci 103:17537–17542

    Article  CAS  Google Scholar 

  • Gadient R, Cron K, Otten U (1990) Interleukin-1 β and tumor necrosis factor-α synergistically stimulate nerve growth factor (NGF) release from cultured rat astrocytes. Neurosci Lett 117:335–340

    Article  CAS  Google Scholar 

  • Gee NS, Brown JP, Dissanayake VU, Offord J, Thurlow R, Woodruff GN (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the subunit of a calcium channel. J Biol Chem 271:5768–5776

    Article  CAS  Google Scholar 

  • George A, Kleinschnitz C, Zelenka M, Brinkhoff J, Stoll G, Sommer C (2004) Wallerian degeneration after crush or chronic constriction injury of rodent sciatic nerve is associated with a depletion of endoneurial interleukin-10 protein. Exp Neurol 188:187–191

    Article  CAS  Google Scholar 

  • Grilli M, Pizzi M, Memo M, Spano P (1996) Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 274:1383

    Article  CAS  Google Scholar 

  • Hoque ME, Nuge T, Yeow TK, Nordin N, Prasad R (2015) Gelatin based scaffolds for tissue engineering—a review. Polym Res J 9:15

    Google Scholar 

  • Lee B-K, Ju YM, Cho J-G, Jackson JD, Lee SJ, Atala A, Yoo JJ (2012) End-to-side neurorrhaphy using an electrospun PCL/collagen nerve conduit for complex peripheral motor nerve regeneration. Biomaterials 33:9027–9036

    Article  CAS  Google Scholar 

  • Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  CAS  Google Scholar 

  • Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715

    Article  CAS  Google Scholar 

  • Luo L, Gan L, Liu Y, Tian W, Tong Z, Wang X, Huselstein C, Chen Y (2015) Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect. Biochem Biophys Res Commun 457:507–513

    Article  CAS  Google Scholar 

  • Miculescu F, Maidaniuc A, Voicu SI, Thakur VK, Stan GE, Ciocan LT (2017) Progress in hydroxyapatite-starch based sustainable biomaterials for biomedical bone substitution applications. ACS Sustain Chem Eng 5:8491–8512

    Article  CAS  Google Scholar 

  • Mu Y, Wu F, Lu Y, Wei L, Yuan W (2014) Progress of electrospun fibers as nerve conduits for neural tissue repair. Nanomedicine 9:1869–1883

    Article  CAS  Google Scholar 

  • Naseri Nosar M, Farzamfar S, Salehi M, Vaez A, Tajerian R, Azami M (2017) Erythropoietin/aloe vera-releasing wet-electrospun polyvinyl alcohol/chitosan sponge-like wound dressing: in vitro and in vivo studies. J Bioact Compat Polym. https://doi.org/10.1177/0883911517731793

    Google Scholar 

  • Naseri-Nosar M, Salehi M, Ghorbani S, Beiranvand SP, Goodarzi A, Azami M (2016) Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration. Cellulose 23:3239–3248

    Article  Google Scholar 

  • Naseri-Nosar M, Salehi M, Hojjati-Emami S (2017a) Cellulose acetate/poly lactic acid coaxial wet-electrospun scaffold containing citalopram-loaded gelatin nanocarriers for neural tissue engineering applications. Int J Biol Macromol 103:701–708

    Article  CAS  Google Scholar 

  • Naseri-Nosar M, Farzamfar S, Sahrapeyma H, Ghorbani S, Bastami F, Vaez A, Salehi M (2017b) Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: in vitro and in vivo evaluation. Mater Sci Eng: C 81:366–372

    Article  CAS  Google Scholar 

  • Otto D, Unsicker K, Grothe C (1987) Pharmacological effects of nerve growth factor and fibroblast growth factor applied to the transectioned sciatic nerve on neuron death in adult rat dorsal root ganglia. Neurosci Lett 83:156–160

    Article  CAS  Google Scholar 

  • Pabari A, Lloyd-Hughes H, Seifalian AM, Mosahebi A (2014) Nerve conduits for peripheral nerve surgery. Plast Reconstr Surg 133:1420–1430

    Article  CAS  Google Scholar 

  • Panseri S, Cunha C, Lowery J, Del Carro U, Taraballi F, Amadio S, Vescovi A, Gelain F (2008) Electrospun micro-and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol 8:39

    Article  Google Scholar 

  • Panzavolta S, Gioffrè M, Focarete ML, Gualandi C, Foroni L, Bigi A (2011) Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 7:1702–1709

    Article  CAS  Google Scholar 

  • Park S, Ahn ES, Han DW, Lee JH, Min KT, Kim H, Hong YW (2008) Pregabalin and gabapentin inhibit substance P-induced NF-κB activation in neuroblastoma and glioma cells. J Cell Biochem 105:414–423

    Article  CAS  Google Scholar 

  • Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211

    Article  CAS  Google Scholar 

  • Puls J, Wilson SA, Hölter D (2011) Degradation of cellulose acetate-based materials: a review. J Polym Environ 19:152–165

    Article  CAS  Google Scholar 

  • Rosa A, Freitas M, Rocha I, Chacur M (2017) Gabapentin decreases microglial cells and reverses bilateral hyperalgesia and allodynia in rats with chronic myositis. Eur J Pharmacol 799:111–117

    Article  CAS  Google Scholar 

  • Salehi M, Farzamfar S, Bastami F, Tajerian R (2016a) Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed Eng Appl Basis Commun 28:1650035

    Article  CAS  Google Scholar 

  • Salehi M, Naseri-Nosar M, Azami M, Nodooshan SJ, Arish J (2016b) Comparative study of poly(l-lactic acid) scaffolds coated with chitosan nanoparticles prepared via ultrasonication and ionic gelation techniques. Tissue Eng Regen Med 13:498–506

    Article  CAS  Google Scholar 

  • Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Farzamfar S, Mansouri K, Ai J (2017a) Polyurethane/gelatin nanofibrils neural guidance conduit containing platelet-rich plasma and melatonin for transplantation of Schwann cells. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-017-0535-8

    Google Scholar 

  • Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Vaez A, Farzamfar S, Ai J (2017b) Regeneration of sciatic nerve crush injury by a hydroxyapatite nanoparticle-containing collagen type I hydrogel. J Physiol Sci. https://doi.org/10.1007/s12576-017-0564-6

    Google Scholar 

  • Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Khojasteh A, Hamidieh A-A, Amani A, Farzamfar S, Ai J (2017c) Sciatic nerve regeneration by transplantation of schwann cells via erythropoietin controlled-releasing polylactic acid/multiwalled carbon nanotubes/gelatin nanofibrils neural guidance conduit. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.33952

    Google Scholar 

  • Samadian H, Mobasheri H, Hasanpour S, Faridi Majidi R (2017) Electrospinning of polyacrylonitrile nanofibers and simulation of electric field via finite element method. Nanomed Res J 2:87–92

    Google Scholar 

  • Taylor CP, Gee NS, Su T-Z, Kocsis JD, Welty DF, Brown JP, Dooley DJ, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29:233–249

    Article  CAS  Google Scholar 

  • Temporin K, Tanaka H, Kuroda Y, Okada K, Yachi K, Moritomo H, Murase T, Yoshikawa H (2008) Interleukin-1 beta promotes sensory nerve regeneration after sciatic nerve injury. Neurosci Lett 440:130–133

    Article  CAS  Google Scholar 

  • Terraf P, Ai J, Kouhsari S, Babaloo H (2016) Indirect co-culture with schwann cells as a new approach for human endometrial stem cells neural transdifferentia tion. Int J Stem Cell Res Transpl 4:235–242

    Google Scholar 

  • Voicu SI, Condruz RM, Mitran V, Cimpean A, Miculescu F, Andronescu C, Miculescu M, Thakur VK (2016) Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications. ACS Sustain Chem Eng 4:1765–1774

    Article  CAS  Google Scholar 

  • Willerth SM, Sakiyama-Elbert SE (2007) Approaches to neural tissue engineering using scaffolds for drug delivery. Adv Drug Deliv Rev 59:325–338

    Article  CAS  Google Scholar 

  • Yu W, Jiang X, Cai M, Zhao W, Ye D, Zhou Y, Zhu C, Zhang X, Lu X, Zhang Z (2014) A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration. Nanotechnology 25:165102

    Article  Google Scholar 

  • Yung C, Wu L, Tullman J, Payne G, Bentley W, Barbari T (2007) Transglutaminase crosslinked gelatin as a tissue engineering scaffold. J Biomed Mater Res, Part A 83:1039–1046

    Article  CAS  Google Scholar 

  • Zhang Y, Venugopal J, Huang Z-M, Lim C, Ramakrishna S (2006) Crosslinking of the electrospun gelatin nanofibers. Polymer 47:2911–2917

    Article  CAS  Google Scholar 

  • Zheng J, Li P, Yao K (2002) Preparation and characterization of gelatin/montmorillonite nanocomposite. J Mater Sci Lett 21:779–781

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Salehi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzamfar, S., Naseri-Nosar, M., Vaez, A. et al. Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose 25, 1229–1238 (2018). https://doi.org/10.1007/s10570-017-1632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1632-z

Keywords

Navigation