Skip to main content

Advertisement

Log in

Neuron-to-Neuron Transfer of FUS in Drosophila Primary Neuronal Culture Is Enhanced by ALS-Associated Mutations

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The DNA- and RNA-binding protein fused in sarcoma (FUS) has been pathologically and genetically linked to amyotrophic lateral sclerosis (ALS) or frontotemporal lobar degeneration (FTLD). Cytoplasmic FUS-positive inclusions were identified in the brain and spinal cord of a subset of patients suffering with ALS/FTLD. An increasing number of reports suggest that FUS protein can behave in a prion-like manner. However, no neuropathological studies or experimental data were available regarding cell-to-cell spread of these pathological protein assemblies. In the present report, we investigated the ability of wild-type and mutant forms of FUS to transfer between neuronal cells. We combined the use of Drosophila models for FUS proteinopathies with that of the primary neuronal cultures to address neuron-to-neuron transfer of FUS proteins. Using conditional co-culture models and an optimized flow cytometry-based methodology, we demonstrated that ALS-mutant forms of FUS proteins can transfer between well-differentiated mature Drosophila neurons. These new observations support that a propagating mechanism could be applicable to FUS, leading to the sequential dissemination of pathological proteins over years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alliegro MC, Alliegro MA (1996) A nuclear protein regulated during the transition from active to quiescent phenotype in cultured endothelial cells. Dev Biol 174:288–297

    Article  CAS  PubMed  Google Scholar 

  • Alonso AD, Beharry C, Corbo CP, Cohen LS (2016) Molecular mechanism of prion-like tau-induced neurodegeneration. Alzheimers Dement 12:1090–1097

    Article  PubMed  Google Scholar 

  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205

    Article  CAS  PubMed  Google Scholar 

  • Bosco DA, Lemay N, Ko HK, Zhou H, Burke C, Kwiatkowski TJ Jr, Sapp P, McKenna-Yasek D, Brown RH Jr, Hayward LJ (2010) Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet 19:4160–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casci I, Pandey UB (2015) A fruitful endeavor: modeling ALS in the fruit fly. Brain Res 1607:47–74

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Yang M, Deng J, Chen X, Ye Y, Zhu L, Liu J, Ye H, Shen Y, Li Y et al (2011) Expression of human FUS protein in Drosophila leads to progressive neurodegeneration. Protein Cell 2:477–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chio A, Restagno G, Brunetti M, Ossola I, Calvo A, Mora G, Sabatelli M, Monsurro MR, Battistini S, Mandrioli J et al (2009) Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation. Neurobiol Aging 30:1272–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couthouis J, Hart MP, Shorter J, DeJesus-Hernandez M, Erion R, Oristano R, Liu AX, Ramos D, Jethava N, Hosangadi D et al (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci U S A 108:20881–20890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman M, Johnson BS, King OD, Gitler AD, Shorter J (2010) Prion-like disorders: blurring the divide between transmissibility and infectivity. J Cell Sci 123:1191–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeJesus-Hernandez M, Kocerha J, Finch N, Crook R, Baker M, Desaro P, Johnston A, Rutherford N, Wojtas A, Kennelly K et al (2010) De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum Mutat 31:E1377–E1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng J, Yang M, Chen Y, Chen X, Liu J, Sun S, Cheng H, Li Y, Bigio EH, Mesulam M et al (2015) FUS interacts with HSP60 to promote mitochondrial damage. PLoS Genet 11:e1005357

    Article  PubMed  PubMed Central  Google Scholar 

  • Dormann D, Haass C (2011) TDP-43 and FUS: a nuclear affair. Trends Neurosci 34:339–348

    Article  CAS  PubMed  Google Scholar 

  • Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, Than ME, Mackenzie IR, Capell A, Schmid B et al (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J 29:2841–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii R, Takumi T (2005) TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J Cell Sci 118:5755–5765

    Article  CAS  PubMed  Google Scholar 

  • Fujii R, Okabe S, Urushido T, Inoue K, Yoshimura A, Tachibana T, Nishikawa T, Hicks GG, Takumi T (2005) The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr Biol 15:587–593

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa M (2016) Molecular mechanisms in the pathogenesis of Alzheimer’s disease and tauopathies-prion-like seeded aggregation and phosphorylation. Biomol Ther 6

  • Ju S, Tardiff DF, Han H, Divya K, Zhong Q, Maquat LE, Bosco DA, Hayward LJ, Brown RH Jr, Lindquist S et al (2011) A yeast model of FUS/TLS-dependent cytotoxicity. PLoS Biol 9:e1001052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamelgarn M, Chen J, Kuang L, Arenas A, Zhai J, Zhu H, Gal J (2016) Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS. Biochim Biophys Acta 1862:2004–2014

    Article  CAS  PubMed  Google Scholar 

  • Kino Y, Washizu C, Aquilanti E, Okuno M, Kurosawa M, Yamada M, Doi H, Nukina N (2011) Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations. Nucleic Acids Res 39:2781–2798

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T et al (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208

    Article  CAS  PubMed  Google Scholar 

  • Lahiani-Skiba M, Barbot C, Bounoure F, Joudieh S, Skiba M (2006) Solubility and dissolution rate of progesterone-cyclodextrin-polymer systems. Drug Dev Ind Pharm 32:1043–1058

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Kim HJ (2015) Prion-like mechanism in amyotrophic lateral sclerosis: are protein aggregates the key? Exp Neurobiol 24:1–7

    Article  PubMed  Google Scholar 

  • Meissner M, Lopato S, Gotzmann J, Sauermann G, Barta A (2003) Proto-oncoprotein TLS/FUS is associated to the nuclear matrix and complexed with splicing factors PTB, SRm160, and SR proteins. Exp Cell Res 283:184–195

    Article  CAS  PubMed  Google Scholar 

  • Miguel L, Avequin T, Delarue M, Feuillette S, Frebourg T, Campion D, Lecourtois M (2012) Accumulation of insoluble forms of FUS protein correlates with toxicity in drosophila. Neurobiol Aging 33(1008):e1001–e1015

    Google Scholar 

  • Nomura T, Watanabe S, Kaneko K, Yamanaka K, Nukina N, Furukawa Y (2014) Intranuclear aggregation of mutant FUS/TLS as a molecular pathomechanism of amyotrophic lateral sclerosis. J Biol Chem 289:1192–1202

    Article  CAS  PubMed  Google Scholar 

  • Osterwalder T, Yoon KS, White BH, Keshishian H (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci U S A 98:12596–12601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratti A, Buratti E (2016) Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins. J Neurochem 138(Suppl 1):95–111

    Article  CAS  PubMed  Google Scholar 

  • Ravits J, Appel S, Baloh RH, Barohn R, Brooks BR, Elman L, Floeter MK, Henderson C, Lomen-Hoerth C, Macklis JD et al (2013) Deciphering amyotrophic lateral sclerosis: what phenotype, neuropathology and genetics are telling us about pathogenesis. Amyotroph Lateral Scler Frontotemporal Degener 14(Suppl 1):5–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Rivero-Gutiérrez B, Anzola A, Martínez-Augustin O, de Medina FS (2014) Stain-free detection as loading control alternative to ponceau and housekeeping protein immunodetection in Western blotting. Anal Biochem 467:1–3

    Article  PubMed  Google Scholar 

  • Schwartz JC, Podell ER, Han SSW, Berry JD, Eggan KC, Cech TR (2014) FUS is sequestered in nuclear aggregates in ALS patient fibroblasts. Mol Biol Cell 25:2571–2578

    Article  PubMed  PubMed Central  Google Scholar 

  • Smethurst P, Sidle KC, Hardy J (2015) Review: Prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathol Appl Neurobiol 41:578–597

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9:e1000614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tateishi T, Hokonohara T, Yamasaki R, Miura S, Kikuchi H, Iwaki A, Tashiro H, Furuya H, Nagara Y, Ohyagi Y et al (2010) Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol 119:355–364

    Article  PubMed  Google Scholar 

  • Tyson T, Steiner JA, Brundin P (2015) Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J Neurochem 139(Suppl 1):275–289

    Google Scholar 

  • Urwin H, Josephs KA, Rohrer JD, Mackenzie IR, Neumann M, Authier A, Seelaar H, Van Swieten JC, Brown JM, Johannsen P et al (2010) FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol 120:33–41

    Article  PubMed  PubMed Central  Google Scholar 

  • Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P et al (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323:1208–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker LC, Schelle J, Jucker M (2016) The prion-like properties of amyloid-beta assemblies: implications for Alzheimer’s disease. Cold Spring Harb Perspect Med 6

Download references

Acknowledgements

We thank the Bloomington Drosophila stock center for providing fly stocks. Confocal images have been obtained at the PRIMACEN imaging platform (Rouen University, France). Flow cytometry and FACS experiments were performed at the CyFlow platform (Rouen University, France). We thank Damien Schapman and Sahil Adriouch for their technical assistance and helpful discussions. This work was co-supported by a grant from the France Alzheimer Association to ML, the European Union, and the Région Normandie. Europe gets involved in Normandie with European Regional Development Fund (ERDF). MD is a PhD fellow of the Région Normandie.

Author information

Authors and Affiliations

Authors

Contributions

S.F., M.D., G. R., and A-L. G. performed the experiments and analyzed the results. M.L., D.C, J.W., and T.F supervised the project. M. L. wrote the manuscript with M.D., O.B., and S.F. Funding were obtained by M.L., D.C., T.F., O.B., and Z.L.

Corresponding author

Correspondence to Magalie Lecourtois.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 5808 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feuillette, S., Delarue, M., Riou, G. et al. Neuron-to-Neuron Transfer of FUS in Drosophila Primary Neuronal Culture Is Enhanced by ALS-Associated Mutations. J Mol Neurosci 62, 114–122 (2017). https://doi.org/10.1007/s12031-017-0908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-0908-y

Keywords

Navigation