Skip to main content

Advertisement

Log in

Effects of CYP-Induced Cystitis on Growth Factors and Associated Receptor Expression in Micturition Pathways in Mice with Chronic Overexpression of NGF in Urothelium

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We have determined if cyclophosphamide (CYP)-induced cystitis produces additional changes in growth factor/receptors expression in the urinary bladder (urothelium, detrusor) and lumbosacral (L6-S1) dorsal root ganglia (DRG) in a transgenic mouse model with chronic urothelial overexpression of NGF (NGF-OE). Functionally, NGF-OE mice treated with CYP exhibit significant increases in voiding frequency above that observed in control NGF-OE mice (no CYP). Quantitative PCR was used to determine NGF, BDNF, VEGF, and receptors (TrkA, TrkB, p75NTR) transcripts expression in tissues from NGF-OE and wild-type (WT) mice with CYP-induced cystitis of varying duration (4 h, 48 h, 8 days). In urothelium of control NGF-OE mice, NGF mRNA was significantly (p ≤ 0.001) increased. Urothelial expression of NGF mRNA in NGF-OE mice treated with CYP (4 h, 48 h, 8 days) was not further increased but maintained with all durations of CYP treatment evaluated. In contrast, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice demonstrated significant (p ≤ 0.05) regulation in BDNF, VEGF, TrkA, TrkB, and P75NTR mRNA in urothelium and detrusor smooth muscle. Similarly, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice resulted in significant (p ≤ 0.05), differential changes in transcript expression for NGF, BDNF, and receptors (TrkA, TrkB, p75NTR) in S1 DRG that was dependent on the duration-of CYP-induced cystitis. In general, NGF, BDNF, TrkA, and TrkB protein content in the urinary bladder increased in WT and NGF-OE mice with CYP-induced cystitis (4 h). Changes in NGF, TrkA and TrkB expression in the urinary bladder were significantly (p ≤ 0.05) greater in NGF-OE mice with CYP-induced cystitis (4 h) compared to WT mice with cystitis (4 h). However, the magnitude of change between WT and NGF-OE mice was only significantly (p ≤ 0.05) different for TrkB expression in urinary bladder of NGF-OE mice treated with CYP. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity with potential contributions to reflex function of micturition pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arms L, and Vizzard MA (2011) Neuropeptides in lower urinary tract function. Handb Exp Pharmacol. 395–423.

  • Arms L, Girard BM, Vizzard MA (2010) Expression and function of CXCL12/CXCR4 in rat urinary bladder with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 298:F589–600

    Article  CAS  PubMed  Google Scholar 

  • Arms L, Girard BM, Malley SE, Vizzard MA (2013) Expression and function of CCL2/CCR2 in rat micturition reflexes and somatic sensitivity with urinary bladder inflammation. Am J Physiol Renal Physiol 305:F111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baskin L, DiSandro M, Li Y, Li W, Hayward S, Cunha G (2001) Mesenchymal-epithelial interactions in bladder smooth muscle development: effects of the local tissue environment. J Urol 165:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Bjorling DE, Jacobsen HE, Blum JR et al (2001) Intravesical Escherichia coli lipopolysaccharide stimulates an increase in bladder nerve growth factor. BJU Int 87:697–702

    Article  CAS  PubMed  Google Scholar 

  • Braas KM, May V, Zvara P et al (2006) Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am J Physiol Regul Integr Comp Physiol 290:R951–962

    Article  CAS  PubMed  Google Scholar 

  • Cheppudira BP, Girard BM, Malley SE, Schutz KC, May V, Vizzard MA (2008) Upregulation of vascular endothelial growth factor isoform VEGF-164 and receptors (VEGFR-2, Npn-1, and Npn-2) in rats with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 295:F826–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang YC, Fraser MO, Yu Y, Chancellor MB, de Groat WC, Yoshimura N (2001) The role of bladder afferent pathways in bladder hyperactivity induced by the intravesical administration of nerve growth factor. J Urol 165:975–979

    Article  CAS  PubMed  Google Scholar 

  • Clemens JQ, Mullins C, Kusek JW et al (2014) The MAPP research network: a novel study of urologic chronic pelvic pain syndromes. BMC Urol 14:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemow DB, Steers WD, McCarty R, Tuttle JB (1998) Altered regulation of bladder nerve growth factor and neurally mediated hyperactive voiding. Am J Physiol 275:R1279–1286

    CAS  PubMed  Google Scholar 

  • Corrow K, Girard BM, Vizzard MA (2010) Expression and response of acid-sensing ion channels in urinary bladder to cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 298:F1130–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiSandro MJ, Li Y, Baskin LS, Hayward S, Cunha G (1998) Mesenchymal-epithelial interactions in bladder smooth muscle development: epithelial specificity. J Urol 160:1040–1046, discussion 1079

    Article  CAS  PubMed  Google Scholar 

  • Dmitrieva N, McMahon SB (1996) Sensitisation of visceral afferents by nerve growth factor in the adult rat. Pain 66:87–97

    Article  CAS  PubMed  Google Scholar 

  • Evans RJ, Moldwin RM, Cossons N, Darekar A, Mills IW, Scholfield D (2011) Proof of concept trial of tanezumab for the treatment of symptoms associated with interstitial cystitis. J Urol 185:1716–1721

    Article  CAS  PubMed  Google Scholar 

  • Fahrenkrug J, Hannibal J (1998a) PACAP in visceral afferent nerves supplying the rat digestive and urinary tracts. Ann N Y Acad Sci 865:542–546

    Article  CAS  PubMed  Google Scholar 

  • Fahrenkrug J, Hannibal J (1998b) Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience 83:1261–1272

    Article  CAS  PubMed  Google Scholar 

  • Frias B, Allen S, Dawbarn D, Charrua A, Cruz F, Cruz CD (2013) Brain-derived neurotrophic factor, acting at the spinal cord level, participates in bladder hyperactivity and referred pain during chronic bladder inflammation. Neuroscience 234:88–102

    Article  CAS  PubMed  Google Scholar 

  • Girard B, Peterson A, Malley S, and Vizzard MA (submitted) Accelerated onset of the vesicovesical reflex in postnatal NGF-OE mice and the role of neuropeptides.

  • Girard BM, Wolf-Johnston A, Braas KM, Birder LA, May V, Vizzard MA (2008) PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 36:310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Malley SE, Braas KM, May V, Vizzard MA (2010) PACAP/VIP and receptor characterization in micturition pathways in mice with overexpression of NGF in urothelium. J Mol Neurosci 42:378–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Malley SE, Vizzard MA (2011) Neurotrophin/receptor expression in urinary bladder of mice with overexpression of NGF in urothelium. Am J Physiol Renal Physiol 300:F345–355

    Article  CAS  PubMed  Google Scholar 

  • Girard BM, Tompkins JD, Parsons RL, May V, Vizzard MA (2012) Effects of CYP-induced cystitis on PACAP/VIP and receptor expression in micturition pathways and bladder function in mice with overexpression of NGF in urothelium. J Mol Neurosci 48:730–743

    Article  CAS  PubMed  Google Scholar 

  • Girard BM, Merrill L, Malley S, Vizzard MA (2013) Increased TRPV4 expression in urinary bladder and lumbosacral dorsal root ganglia in mice with chronic overexpression of NGF in urothelium. J Mol Neurosci 51:602–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez EJ, Girard BM, Vizzard MA (2013) Expression and function of transforming growth factor-beta isoforms and cognate receptors in the rat urinary bladder following cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 305:F1265–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez EJ, Arms L, Vizzard MA (2014a) The role(s) of cytokines/chemokines in urinary bladder inflammation and dysfunction. Biomed Res Int 2014:120525

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez EJ, Merrill L, Vizzard MA (2014b) Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function. Am J Physiol Regul Integr Comp Physiol 306:R869–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez EJ, Peterson A, Malley S et al (2015) The effects of tempol on cyclophosphamide-induced oxidative stress in rat micturition reflexes. Sci World J 2015:545048

    Article  Google Scholar 

  • Guerios SD, Wang ZY, Bjorling DE (2006) Nerve growth factor mediates peripheral mechanical hypersensitivity that accompanies experimental cystitis in mice. Neurosci Lett 392:193–197

    Article  CAS  PubMed  Google Scholar 

  • Guerios SD, Wang ZY, Boldon K, Bushman W, Bjorling DE (2008) Blockade of NGF and trk receptors inhibits increased peripheral mechanical sensitivity accompanying cystitis in rats. Am J Physiol Regul Integr Comp Physiol 295:R111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanno PM, Sant GR (2001) Clinical highlights of the national institute of diabetes and digestive and kidney diseases/interstitial cystitis association scientific conference on interstitial cystitis. Urology 57:2–6

    Article  CAS  PubMed  Google Scholar 

  • Herrera GM, Braas KM, May V, Vizzard MA (2006) PACAP enhances mouse urinary bladder contractility and is upregulated in micturition reflex pathways after cystitis. Ann N Y Acad Sci 1070:330–336

    Article  CAS  PubMed  Google Scholar 

  • Hu VY, Zvara P, Dattilio A et al (2005) Decrease in bladder overactivity with REN1820 in rats with cyclophosphamide induced cystitis. J Urol 173:1016–1021

    Article  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaggar SI, Scott HC, Rice AS (1999) Inflammation of the rat urinary bladder is associated with a referred thermal hyperalgesia which is nerve growth factor dependent. Br J Anaesth 83:442–448

    Article  CAS  PubMed  Google Scholar 

  • Jiang YH, Peng CH, Liu HT, Kuo HC (2013) Increased pro-inflammatory cytokines, C-reactive protein and nerve growth factor expressions in serum of patients with interstitial cystitis/bladder pain syndrome. PLoS One 8:e76779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang YH, Liu HT, Kuo HC (2014) Decrease of urinary nerve growth factor but not brain-derived neurotrophic factor in patients with interstitial cystitis/bladder pain syndrome treated with hyaluronic Acid. PLoS One 9:e91609

    Article  PubMed  PubMed Central  Google Scholar 

  • Klinger MB, Vizzard MA (2008) Role of p75NTR in female rat urinary bladder with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 295:F1778–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinger MB, Girard B, Vizzard MA (2008) p75NTR expression in rat urinary bladder sensory neurons and spinal cord with cyclophosphamide-induced cystitis. J Comp Neurol 507:1379–1392

    Article  CAS  PubMed  Google Scholar 

  • Kuo HC, Liu HT, Chancellor MB (2010a) Can urinary nerve growth factor be a biomarker for overactive bladder? Rev Urol 12:e69–77

    PubMed  PubMed Central  Google Scholar 

  • Kuo HC, Liu HT, Tyagi P, Chancellor MB (2010b) Urinary nerve growth factor levels in urinary tract diseases with or without frequency urgency symptoms. Low Urin Tract Symp 2:88–94

    Article  CAS  Google Scholar 

  • Landis JR, Williams DA, Lucia MS et al (2014) The MAPP research network: design, patient characterization and operations. BMC Urol 14:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang FX, Bosland MC, Huang H et al (2005) Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement. J Cell Biol 171:835–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JH, Zhao H, Sun TT (1995) A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proc Natl Acad Sci U S A 92:679–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HT, Chen CY, Kuo HC (2010) Urinary nerve growth factor levels in overactive bladder syndrome and lower urinary tract disorders. J Formos Med Assoc 109:862–878

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Chen CY, Kuo HC (2011) Urinary nerve growth factor in women with overactive bladder syndrome. BJU Int 107:799–803

    Article  CAS  PubMed  Google Scholar 

  • Lowe EM, Anand P, Terenghi G, Williams-Chestnut RE, Sinicropi DV, Osborne JL (1997) Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br J Urol 79:572–577

    Article  CAS  PubMed  Google Scholar 

  • Malykhina AP, Lei Q, Erickson CS et al (2012) VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity. BMC Physiol 12:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May V, Vizzard MA (2010) Bladder dysfunction and altered somatic sensitivity in PACAP−/− mice. J Urol 183:772–779

    Article  PubMed  PubMed Central  Google Scholar 

  • McMahon SB (1996) NGF as a mediator of inflammatory pain. Philos Trans R Soc Lond B Biol Sci 351:431–440

    Article  CAS  PubMed  Google Scholar 

  • Mendell LM, Albers KM, Davis BM (1999) Neurotrophins, nociceptors, and pain. Microsc Res Tech 45:252–261

    Article  CAS  PubMed  Google Scholar 

  • Merrill L, Girard B, Arms L, Guertin P, Vizzard MA (2013) Neuropeptide/receptor expression and plasticity in micturition pathways. Curr Pharm Des 19:4411–4422

    Article  CAS  PubMed  Google Scholar 

  • Mohammed H, Hannibal J, Fahrenkrug J, Santer R (2002) Distribution and regional variation of pituitary adenylate cyclase activating polypeptide and other neuropeptides in the rat urinary bladder and ureter: effects of age. Urol Res 30:248–255

    Article  CAS  PubMed  Google Scholar 

  • Okragly AJ, Niles AL, Saban R et al (1999) Elevated tryptase, nerve growth factor, neurotrophin-3 and glial cell line-derived neurotrophic factor levels in the urine of interstitial cystitis and bladder cancer patients. J Urol 161:438–441, discussion 441–432

    Article  CAS  PubMed  Google Scholar 

  • Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  CAS  PubMed  Google Scholar 

  • Saban R (2015) Angiogenic factors, bladder neuroplasticity and interstitial cystitis—new pathobiological insights. Translat Androl Urol 4:555–562

    Google Scholar 

  • Saban MR, Backer JM, Backer MV et al (2008a) VEGF receptors and neuropilins are expressed in the urothelial and neuronal cells in normal mouse urinary bladder and are upregulated in inflammation. Am J Physiol Renal Physiol 295:F60–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saban R, Saban MR, Maier J et al (2008b) Urothelial expression of neuropilins and VEGF receptors in control and interstitial cystitis patients. Am J Physiol Renal Physiol 295:F1613–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saban MR, Sferra TJ, Davis CA et al (2010) Neuropilin-VEGF signaling pathway acts as a key modulator of vascular, lymphatic, and inflammatory cell responses of the bladder to intravesical BCG treatment. Am J Physiol Renal Physiol 299:F1245–1256

    Article  PubMed  Google Scholar 

  • Saban MR, Davis CA, Avelino A et al (2011) VEGF signaling mediates bladder neuroplasticity and inflammation in response to BCG. BMC Physiol 11:16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnegelsberg B, Sun TT, Cain G et al (2010) Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am J Physiol Regul Integr Comp Physiol 298:R534–547

    Article  CAS  PubMed  Google Scholar 

  • Seth JH, Sahai A, Khan MS et al (2013) Nerve growth factor (NGF): a potential urinary biomarker for overactive bladder syndrome (OAB)? BJU Int 111:372–380

    Article  CAS  PubMed  Google Scholar 

  • Sheffield KS, Kennedy AE, Scott JA, Ross GM (2016) Characterizing nerve growth factor-p75(NTR) interactions and small molecule inhibition using surface plasmon resonance spectroscopy. Anal Biochem 493:21–26

    Article  CAS  PubMed  Google Scholar 

  • Song QX, Chermansky CJ, Birder LA, Li L, Damaser MS (2014) Brain-derived neurotrophic factor in urinary continence and incontinence. Nat Rev Urol 11:579–588

    CAS  PubMed  Google Scholar 

  • Studeny S, Cheppudira BP, Meyers S et al (2008) Urinary bladder function and somatic sensitivity in vasoactive intestinal polypeptide (VIP)−/− mice. J Mol Neurosci 36:175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizzard MA (2000a) Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp Neurol 161:273–284

    Article  CAS  PubMed  Google Scholar 

  • Vizzard MA (2000b) Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. J Comp Neurol 420:335–348

    Article  CAS  PubMed  Google Scholar 

  • Yuk SM, Shin JH, Song KH, Na YG, Lim JS, Sul CK (2015) Expression of brain derived-neurotrophic factor and granulocyte-colony stimulating factor in the urothelium: relation with voiding function. BMC Urol 15:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Zvara P, Vizzard MA (2007) Exogenous overexpression of nerve growth factor in the urinary bladder produces bladder overactivity and altered micturition circuitry in the lumbosacral spinal cord. BMC Physiol 7:9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Debra Cockayne, Roche Palo Alto, for the generous gift of NGF-OE mouse breeders used in the present study. The authors gratefully acknowledge the technical expertise and support provided by the VT Cancer Center DNA Analysis Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Vizzard.

Ethics declarations

Grants

This work was funded by the National Institutes of Health (NIH) grants DK051369 (MAV), DK060481 (MAV), and DK065989 (MAV). This publication was also supported by grants from the National Center for Research Resources (5 P30 RR 032135) and the National Institute of General Medical Sciences (8 P30 GM 103498) from the NIH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, B.M., Malley, S., May, V. et al. Effects of CYP-Induced Cystitis on Growth Factors and Associated Receptor Expression in Micturition Pathways in Mice with Chronic Overexpression of NGF in Urothelium. J Mol Neurosci 59, 531–543 (2016). https://doi.org/10.1007/s12031-016-0774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0774-z

Keywords

Navigation