Skip to main content

Advertisement

Log in

Effects of CYP-Induced Cystitis on PACAP/VIP and Receptor Expression in Micturition Pathways and Bladder Function in Mice with Overexpression of NGF in Urothelium

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We have previously demonstrated nerve growth factor (NGF) regulation of pituitary adenylate cyclase-activating polypeptide (PACAP)/receptors in bladder reflex pathways using a transgenic mouse model of chronic NGF overexpression in the bladder using the urothelial-specific uroplakin II promoter. We have now explored the contribution of target-derived NGF in combination with cyclophosphamide (CYP)-induced cystitis to determine whether additional changes in neuropeptides/receptors are observed in micturition reflex pathways due to the presence of additional inflammatory mediators in the urinary bladder. Quantitative PCR was used to determine PACAP/vasoactive intestinal polypeptide (VIP), substance P, galanin, and receptor transcript expression in the urinary bladder (urothelium, detrusor) in mice with overexpression of NGF in the urothelium (NGF-OE) and wild-type (WT) mice with CYP-induced cystitis (4 h, 48 h, and chronic). With CYP-induced cystitis (4 h), WT and NGF-OE mice exhibited similar changes in galanin transcript expression in the urothelium (30-fold increase) and detrusor (threefold increase). In contrast, PACAP, VIP, and substance P transcripts exhibited differential changes in WT and NGF-OE with CYP-induced cystitis. PAC1, VPAC1, and VPAC2 transcript expression also exhibited differential responses in NGF-OE mice that were tissue (urothelium vs. detrusor) and CYP-induced cystitis duration-dependent. Using conscious cystometry, NGF-OE mice treated with CYP exhibited significant (p ≤ 0.01) increases in voiding frequency above that observed in control NGF-OE mice. In addition, no changes in the electrical properties of the major pelvic ganglia neurons of NGF-OE mice were detected using intracellular recording, suggesting that the urinary bladder phenotype in NGF-OE mice is not influenced by changes in the efferent limb of the micturition reflex. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity and the reflex function of micturition pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen SJ, Dawbarn D (2006) Clinical relevance of the neurotrophins and their receptors. Clin Sci (Lond) 110:175–191

    Article  CAS  Google Scholar 

  • Arimura A (1998) Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol 48:301–331

    Article  PubMed  CAS  Google Scholar 

  • Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129:2787–2789

    Article  PubMed  CAS  Google Scholar 

  • Arms L, Girard BM, Vizzard MA (2010) Expression and function of CXCL12/CXCR4 in rat urinary bladder with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 298:F589–F600

    Article  PubMed  CAS  Google Scholar 

  • Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J et al (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    Article  PubMed  CAS  Google Scholar 

  • Braas KM, May V (1996) Pituitary adenylate cyclase-activating polypeptides, PACAP-38 and PACAP-27, regulation of sympathetic neuron catecholamine, and neuropeptide Y expression through activation of type I PACAP/VIP receptor isoforms. Ann N Y Acad Sci 805:204–216, discussion 217–208

    Article  PubMed  CAS  Google Scholar 

  • Braas KM, May V (1999) Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC(1) receptor isoform activation of specific intracellular signaling pathways. J Biol Chem 274:27702–27710

    Article  PubMed  CAS  Google Scholar 

  • Braas KM, May V, Harakall SA, Hardwick JC, Parsons RL (1998) Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. J Neurosci 18:9766–9779

    PubMed  CAS  Google Scholar 

  • Braas KM, May V, Zvara P, Nausch B, Kliment J, Dunleavy JD et al (2006) Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am J Physiol Regul Integr Comp Physiol 290:R951–R962

    Article  PubMed  CAS  Google Scholar 

  • Cheppudira BP, Girard BM, Malley SE, Schutz KC, May V, Vizzard MA (2008) Upregulation of vascular endothelial growth factor isoform VEGF-164 and receptors (VEGFR-2, Npn-1, and Npn-2) in rats with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 295:F826–F836

    Article  PubMed  CAS  Google Scholar 

  • Christmas TJ, Rode J, Chapple CR, Milroy EJ, Turner-Warwick RT (1990) Nerve fibre proliferation in interstitial cystitis. Virchows Arch A Pathol Anat Histopathol 416:447–451

    Article  PubMed  CAS  Google Scholar 

  • Chuang YC, Fraser MO, Yu YB, Chancellor MB, deGroat WC, Yoshimura N (2001) The role of bladder afferent pathways in bladder hyperactivity induced by the intravesical administration of nerve growth factor. J Urol 165:975–979

    Article  PubMed  CAS  Google Scholar 

  • Clemow DB, Steers WD, McCarty R, Tuttle JB (1998) Altered regulation of bladder nerve growth factor and neurally mediated hyperactive voiding. Am J Physiol Regul Integr Comp Physiol 44:R1279–R1286

    Google Scholar 

  • Dmitrieva N, Shelton D, Rice ASC, McMahon SB (1997) The role of nerve growth factor in a model of visceral inflammation. Neuroscience 78:449–459

    Article  PubMed  CAS  Google Scholar 

  • Driscoll A, Teichman JMH (2001) How do patients with interstitial cystitis present? J Urol 166:2118–2120

    Article  PubMed  CAS  Google Scholar 

  • Evans RJ, Moldwin RM, Cossons N, Darekar A, Mills IW, Scholfield D (2011) Proof of concept trial of tanezumab for the treatment of symptoms associated with interstitial cystitis. J Urol 185:1716–1721

    Article  PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Hannibal J (1998) Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience 83:1261–1272

    Article  PubMed  CAS  Google Scholar 

  • Ford AP, Gever JR, Nunn PA, Zhong Y, Cefalu JS, Dillon MP et al (2006) Purinoceptors as therapeutic targets for lower urinary tract dysfunction. Br J Pharmacol 147(Suppl 2):S132–S143

    Article  PubMed  CAS  Google Scholar 

  • Fox-Threlkeld JA, McDonald TJ, Woskowska Z, Iesaki K, Daniel EE (1999) Pituitary adenylate cyclase-activating peptide as a neurotransmitter in the canine ileal circular muscle. J Pharmacol Exp Ther 290:66–75

    PubMed  CAS  Google Scholar 

  • Girard BM, May V, Bora SH, Fina F, Braas KM (2002) Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regul Pept 109:89–101

    Article  PubMed  CAS  Google Scholar 

  • Girard BA, Lelievre V, Braas KM, Razinia T, Vizzard MA, Ioffe Y et al (2006) Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J Neurochem 99:499–513

    Article  PubMed  CAS  Google Scholar 

  • Girard BM, Wolf-Johnston A, Braas KM, Birder LA, May V, Vizzard MA (2008) PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 36:310–320

    Article  PubMed  CAS  Google Scholar 

  • Girard BM, Malley SE, Braas KM, May V, Vizzard MA (2010) PACAP/VIP and receptor characterization in micturition pathways in mice with overexpression of NGF in urothelium. J Mol Neurosci 42:378–389

    Article  PubMed  CAS  Google Scholar 

  • Girard BM, Malley SE, Vizzard MA (2011) Neurotrophin/receptor expression in urinary bladder of mice with overexpression of NGF in urothelium. Am J Physiol Renal Physiol 300:F345–F355

    Article  PubMed  CAS  Google Scholar 

  • Guerios SD, Wang ZY, Bjorling DE (2006) Nerve growth factor mediates peripheral mechanical hypersensitivity that accompanies experimental cystitis in mice. Neurosci Lett 392:193–197

    Article  PubMed  CAS  Google Scholar 

  • Guerios SD, Wang ZY, Boldon K, Bushman W, Bjorling DE (2008) Blockade of NGF and trk receptors inhibits increased peripheral mechanical sensitivity accompanying cystitis in rats. Am J Physiol Regul Integr Comp Physiol 295:R111–R122

    Article  PubMed  CAS  Google Scholar 

  • Herrera GM, Meredith AL (2011) Diurnal variation in urodynamics of rat. PLoS One 5:e12298

    Article  Google Scholar 

  • Herrera GM, Braas KM, May V, Vizzard MA (2006) PACAP enhances mouse urinary bladder contractility and is upregulated in micturition reflex pathways after cystitis. Ann N Y Acad Sci 1070:330–336

    Article  PubMed  CAS  Google Scholar 

  • Hoyle GW, Graham RM, Finkelstein JB, Nguyen KP, Gozal D, Friedman M (1998) Hyperinnervation of the airways in transgenic mice overexpressing nerve growth factor. Am J Respir Cell Mol Biol 18:149–157

    PubMed  CAS  Google Scholar 

  • Hu VY, Zvara P, Dattilio A, Redman TL, Allen SJ, Dawbarn D et al (2005) Decrease in bladder overactivity with REN1820 in rats with cyclophosphamide induced cystitis. J Urol 173:1016–1021

    Article  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Ann Rev Neurosci 24:677–736

    Article  PubMed  CAS  Google Scholar 

  • Jaggar SI, Scott HCF, Rice ASC (1999) Inflammation of the rat urinary bladder is associated with a referred thermal hyperalgesia which is nerve growth factor dependent. Br J Anaesth 83:442–448

    Article  PubMed  CAS  Google Scholar 

  • Jongsma Wallin H, Danielsen N, Johnston JM, Gratto KA, Karchewski LA, Verge VMK (2001) Exogenous NT-3 and NGF differentially modulate PACAP expression in adult sensory neurons, suggesting distinct roles in injury and inflammation. Eur J Neurosci 14:267–282

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Park EY, Hong SH, Seo SI, Park YH, Hwang TK (2005) Changes of urinary nerve growth factor and prostaglandins in male patients with overactive bladder symptom. Int J Urol 12:875–880

    Article  PubMed  CAS  Google Scholar 

  • Kim JC, Park EY, Seo SI, Park YH, Hwang TK (2006) Nerve growth factor and prostaglandins in the urine of female patients with overactive bladder. J Urol 175:1773–1776, discussion 1776

    Article  PubMed  CAS  Google Scholar 

  • Klinger MB, Vizzard MA (2008) Role of p75NTR in female rat urinary bladder with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 295:F1778–F1789

    Article  PubMed  CAS  Google Scholar 

  • Klinger MB, Girard B, Vizzard MA (2008) p75(NTR) expression in rat urinary bladder sensory neurons and spinal cord with cyclophosphamide-induced cystitis. J Comp Neurol 507:1379–1392

    Article  PubMed  CAS  Google Scholar 

  • Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ et al (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50:277–289

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R, Skaper SD, Dal TR, Petrelli L, Leon A (1996) Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 19:514–520

    Article  PubMed  CAS  Google Scholar 

  • Liang FX, Bosland MC, Huang H, Romih R, Baptiste S, Deng FM et al (2005) Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement. J Cell Biol 171:835–844

    Article  PubMed  CAS  Google Scholar 

  • Lin JH, Zhao H, Sun TT (1995) A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proc Natl Acad Sci U S A 92:679–683

    Article  PubMed  CAS  Google Scholar 

  • Lin G, Shindel AW, Fandel TM, Bella AJ, Lin CS, Lue TF (2010) Neurotrophic effects of brain-derived neurotrophic factor and vascular endothelial growth factor in major pelvic ganglia of young and aged rats. BJU Int 105:114–120

    Article  PubMed  CAS  Google Scholar 

  • Liu HT, Kuo HC (2007) Intravesical botulinum toxin A injections plus hydrodistension can reduce nerve growth factor production and control bladder pain in interstitial cystitis. Urology 70:463–468

    Article  PubMed  Google Scholar 

  • Liu HT, Kuo HC (2008a) Urinary nerve growth factor level could be a potential biomarker for diagnosis of overactive bladder. J Urol 179:2270–2274

    Article  PubMed  Google Scholar 

  • Liu HT, Kuo HC (2008b) Urinary nerve growth factor levels are increased in patients with bladder outlet obstruction with overactive bladder symptoms and reduced after successful medical treatment. Urology 72:104–108

    Article  PubMed  Google Scholar 

  • Liu HT, Chancellor MB, Kuo HC (2008a) Urinary nerve growth factor levels are elevated in patients with detrusor overactivity and decreased in responders to detrusor botulinum toxin-A injection. Eur Urol 56:700–706

    Article  PubMed  Google Scholar 

  • Liu HT, Chancellor MB, Kuo HC (2008b) Urinary nerve growth factor level could be a biomarker in the differential diagnosis of mixed urinary incontinence in women. BJU Int 102:1440–1444

    PubMed  Google Scholar 

  • Lowe EM, Anand P, Terenghi G, Williams-Chestnut RE, Sinicropi DV, Osborne JL (1997) Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br J Urol 79:572–577

    Article  PubMed  CAS  Google Scholar 

  • Lundeberg T, Liedberg H, Nordling L, Theodorsson E, Owzarski A, Ekman P (1993) Interstitial cystitis: correlation with nerve fibres, mast cells and histamine. Br J Urol 71:427–429

    Article  PubMed  CAS  Google Scholar 

  • Maggi CA, Santicioli P, Meli A (1986) The nonstop transvesical cystometrogram in urethane-anesthetized rats: a simple procedure for quantitative studies on the various phases of urinary bladder voiding cycle. J Pharmacol Methods 15:157–167

    Article  PubMed  CAS  Google Scholar 

  • Malley SE, Vizzard MA (2002) Changes in urinary bladder cytokine mRNA and protein after cyclophosphamide-induced cystitis. Physiol Genomics 9:5–13

    PubMed  CAS  Google Scholar 

  • Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL (2011) Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology 115:189–204

    Article  PubMed  Google Scholar 

  • May V, Vizzard MA (2010) Bladder dysfunction and altered somatic sensitivity in PACAP−/− mice. J Urol 183:772–779

    Article  PubMed  Google Scholar 

  • Mizumoto A, Fujimura M, Ohtawa M, Ueki S, Hayashi N, Itoh Z et al (1992) Pituitary adenylate cyclase activating polypeptide stimulates gallbladder motility in conscious dogs. Regul Pept 42:39–50

    Article  PubMed  CAS  Google Scholar 

  • Mohammed H, Hannibal J, Fahrenkrug J, Santer R (2002) Distribution and regional variation of pituitary adenylate cyclase activating polypeptide and other neuropeptides in the rat urinary bladder and ureter: effects of age. Urol Res 30:248–255

    Article  PubMed  CAS  Google Scholar 

  • Moller K, Reimer M, Hannibal J, Fahrenkrug J, Sundler F, Kanje M (1997a) Pituitary adenylate cyclase-activating peptide (PACAP) and PACAP type 1 receptor expression in regenerating adult mouse and rat superior cervical ganglia in vitro. Brain Res 775:156–165

    Article  PubMed  CAS  Google Scholar 

  • Moller K, Reimer M, Ekblad E, Hannibal J, Fahrenkrug J, Kanje M et al (1997b) The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res 775:166–182

    Article  PubMed  CAS  Google Scholar 

  • Oddiah D, Anand P, McMahon SB, Rattray M (1998) Rapid increase of NGF, BDNF and NT-3 mRNAs in inflamed bladder. Neuroreport 9:1455–1458

    Article  PubMed  CAS  Google Scholar 

  • Okragly AJ, Niles AL, Saban R, Schmidt D, Hoffman RL, Warner TF et al (1999) Elevated tryptase, nerve growth factor, neurotrophin-3 and glial cell line-derived neurotrophic factor levels in the urine of interstitial cystitis and bladder cancer patients. J Urol 161:438–442

    Article  PubMed  CAS  Google Scholar 

  • Onaga T, Harada Y, Okamoto K (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) induces duodenal phasic contractions via the vagal cholinergic nerves in sheep. Regul Pept 77:69–76

    Article  PubMed  CAS  Google Scholar 

  • Peeker R, Enerback L, Fall M, Aldenborg F (2000) Recruitment, distribution and phenotypes of mast cells in interstitial cystitis. J Urol 163:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  PubMed  CAS  Google Scholar 

  • Sandor K, Bolcskei K, McDougall JJ, Schuelert N, Reglodi D, Elekes K et al (2009) Divergent peripheral effects of pituitary adenylate cyclase-activating polypeptide-38 on nociception in rats and mice. Pain 141:143–150

    Article  PubMed  CAS  Google Scholar 

  • Schnegelsberg B, Sun TT, Cain G, Bhattacharya A, Nunn PA, Ford AP et al (2010) Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am J Physiol Regul Integr Comp Physiol 298:R534–R547

    Article  PubMed  CAS  Google Scholar 

  • Seebeck J, Lowe M, Kruse ML, Schmidt WE, Mehdorn HM, Ziegler A et al (2002) The vasorelaxant effect of pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in isolated rat basilar arteries is partially mediated by activation of nitrergic neurons. Regul Pept 107:115–123

    Article  PubMed  CAS  Google Scholar 

  • Stewart AL, Anderson RB, Kobayashi K, Young HM (2008) Effects of NGF, NT-3 and GDNF family members on neurite outgrowth and migration from pelvic ganglia from embryonic and newborn mice. BMC Dev Biol 8:73

    Article  PubMed  Google Scholar 

  • Studeny S, Cheppudira BP, Meyers S, Balestreire EM, Apodaca G, Birder LA et al (2008) Urinary bladder function and somatic sensitivity in vasoactive intestinal polypeptide (VIP)−/− mice. J Mol Neurosci 36:175–187

    Article  PubMed  CAS  Google Scholar 

  • Sundler F, Ekblad E, Hannibal J, Moller K, Zhang YZ, Mulder H et al (1996) Pituitary adenylate cyclase-activating peptide in sensory and autonomic ganglia: localization and regulation. Ann N Y Acad Sci 805:410–426

    Article  PubMed  CAS  Google Scholar 

  • Szallasi A, Cortright DN, Blum CA, Eid SR (2007) The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat Rev Drug Discov 6:357–372

    Article  PubMed  CAS  Google Scholar 

  • Tompkins JD, Lawrence YT, Parsons RL (2009) Enhancement of Ih, but not inhibition of IM, is a key mechanism underlying the PACAP-induced increase in excitability of guinea pig intrinsic cardiac neurons. Am J Physiol Regul Integr Comp Physiol 297:R52–R59

    Article  PubMed  CAS  Google Scholar 

  • Vizzard MA (2000a) Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. J Comp Neurol 420:335–348

    Article  PubMed  CAS  Google Scholar 

  • Vizzard MA (2000b) Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp Neurol 161:273–284

    Article  PubMed  CAS  Google Scholar 

  • Vizzard MA (2001) Alterations in neuropeptide expression in lumbosacral bladder pathways following chronic cystitis. J Chem Neuroanat 21:125–138

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama T, Kumon H, Nagai A (2008) Correlation of urinary nerve growth factor level with pathogenesis of overactive bladder. Neurourol Urodyn 27:417–420

    Article  PubMed  Google Scholar 

  • Yoshimura N, Seki S, Chancellor MB, de Groat WC, Ueda T (2002) Targeting afferent hyperexcitability for therapy of the painful bladder syndrome. Urology 59:61–67

    Article  PubMed  Google Scholar 

  • Yuridullah R, Corrow KA, Malley SE, Vizzard MA (2006) Expression of fractalkine and fractalkine receptor in urinary bladder after cyclophosphamide (CYP)-induced cystitis. Auton Neurosci 126–127:380–389

    Article  PubMed  Google Scholar 

  • Zizzo MG, Mule F, Serio R (2004) Interplay between PACAP and NO in mouse ileum. Neuropharmacology 46:449–455

    Article  PubMed  CAS  Google Scholar 

  • Zvara P, Vizzard MA (2007) Exogenous overexpression of nerve growth factor in the urinary bladder produces bladder overactivity and altered micturition circuitry in the lumbosacral spinal cord. BMC Physiol 7:9

    Article  PubMed  Google Scholar 

  • Zvara P, Braas KM, May V, Vizzard MA (2006) A role for pituitary adenylate cyclase activating polypeptide (PACAP) in detrusor hyperreflexia after spinal cord injury (SCI). Ann N Y Acad Sci 1070:622–628

    Article  PubMed  CAS  Google Scholar 

  • Zvarova K, Vizzard MA (2006) Changes in galanin immunoreactivity in rat micturition reflex pathways after cyclophosphamide-induced cystitis. Cell Tissue Res 324:213–224

    Article  PubMed  CAS  Google Scholar 

  • Zvarova K, Murray E, Vizzard MA (2004) Changes in galanin immunoreactivity in rat lumbosacral spinal cord and dorsal root ganglia after spinal cord injury. J Comp Neurol 475:590–603

    Article  PubMed  CAS  Google Scholar 

  • Zvarova K, Dunleavy JD, Vizzard MA (2005) Changes in pituitary adenylate cyclase activating polypeptide expression in urinary bladder pathways after spinal cord injury. Exp Neurol 192:46–59

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Debra Cockayne, Roche Palo Alto, for the generous gift of NGF-OE mouse breeders used in the present study. The authors acknowledge the technical support of Abbey Peterson in the conduct of these studies. The authors gratefully acknowledge the technical expertise and support provided by the VT Cancer Center DNA Analysis Facility. This work was funded by National Institutes of Health (NIH) grants DK051369 (MAV), DK060481 (MAV), DK065989 (MAV), and DK081444 (JDT). This publication was also supported by grants from the National Center for Research Resources (5 P30 RR 032135) and the National Institute of General Medical Sciences (8 P30 GM 103498) from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Vizzard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girard, B.M., Tompkins, J.D., Parsons, R.L. et al. Effects of CYP-Induced Cystitis on PACAP/VIP and Receptor Expression in Micturition Pathways and Bladder Function in Mice with Overexpression of NGF in Urothelium. J Mol Neurosci 48, 730–743 (2012). https://doi.org/10.1007/s12031-012-9834-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9834-1

Keywords

Navigation