Skip to main content

Advertisement

Log in

Intravesical PAC1 Receptor Antagonist, PACAP(6–38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in NGF-OE Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chronic NGF overexpression (OE) in the urothelium, achieved through the use of a highly urothelium-specific uroplakin II promoter, stimulates neuronal sprouting in the urinary bladder, produces increased voiding frequency and non-voiding contractions, and referred somatic sensitivity. Additional NGF-mediated pleiotropic changes might contribute to increased voiding frequency and pelvic hypersensitivity in NGF-OE mice such as neuropeptide/receptor systems including PACAP(Adcyap1) and PAC1 receptor (Adcyap1r1). Given the presence of PAC1-immunoreactive fibers and the expression of PAC1 receptor expression in bladder tissues, and PACAP-facilitated detrusor contraction, whether PACAP/receptor signaling contributes to increased voiding frequency and somatic sensitivity was evaluated in NGF-OE mice. Intravesical administration of the PAC1 receptor antagonist, PACAP(6–38) (300 nM), significantly (p ≤ 0.01) increased intercontraction interval (2.0-fold) and void volume (2.5-fold) in NGF-OE mice. Intravesical instillation of PACAP(6–38) also decreased baseline bladder pressure in NGF-OE mice. PACAP(6–38) had no effects on bladder function in WT mice. Intravesical administration of PACAP(6–38) (300 nM) significantly (p ≤ 0.01) reduced pelvic sensitivity in NGF-OE mice but was without effect in WT mice. PACAP/receptor signaling contributes to the increased voiding frequency and pelvic sensitivity observed in NGF-OE mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Gawad M, Dion SB, Elhilali MM (2001) Evidence of a peripheral role of neurokinins in detrusor hyperreflexia: a further study of selective tachykinin antagonists in chronic spinal injured rats. J Urol 165:1739–1744

    Article  CAS  PubMed  Google Scholar 

  • Andres R, Herraez-Baranda LA, Thompson J, Wyatt S, Davies AM (2008) Regulation of sympathetic neuron differentiation by endogenous nerve growth factor and neurotrophin-3. Neurosci Lett 431:241–246

    Article  CAS  PubMed  Google Scholar 

  • Arimura A (1998) Perspectives on pituitary adenylate cyclase activating polypeptide (PACAP) in the neuroendocrine, endocrine, and nervous systems. Jpn J Physiol 48:301–331

    Article  CAS  PubMed  Google Scholar 

  • Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129:2787–2789

    Article  CAS  PubMed  Google Scholar 

  • Arms L, Vizzard MA (2011) Neuropeptides in lower urinary tract function. Handb Exp Pharmacol:395–423

  • Beaudet MM, Braas KM, May V (1998) Pituitary adenylate cyclase activating polypeptide (PACAP) expression in sympathetic preganglionic projection neurons to the superior cervical ganglion. J Neurobiol 36:325–336

    Article  CAS  PubMed  Google Scholar 

  • Bjorling DE, Jacobsen HE, Blum JR, et al. (2001) Intravesical Escherichia coli lipopolysaccharide stimulates an increase in bladder nerve growth factor. BJU Int 87:697–702

    Article  CAS  PubMed  Google Scholar 

  • Braas KM, May V (1996) Pituitary adenylate cyclase-activating polypeptides, PACAP-38 and PACAP-27, regulation of sympathetic neuron catecholamine, and neuropeptide Y expression through activation of type I PACAP/VIP receptor isoforms. Ann N Y Acad Sci 805:204–216 discussion 217-208

    Article  CAS  PubMed  Google Scholar 

  • Braas KM, May V, Harakall SA, Hardwick JC, Parsons RL (1998) Pituitary adenylate cyclase-activating polypeptide expression and modulation of neuronal excitability in guinea pig cardiac ganglia. J Neurosci 18:9766–9779

    CAS  PubMed  Google Scholar 

  • Braas KM, May V, Zvara P, et al. (2006) Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes. Am J Physiol Regul Integr Comp Physiol 290:R951–R962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheppudira BP, Girard BM, Malley SE, et al. (2009) Involvement of JAK-STAT signaling/function after cyclophosphamide-induced bladder inflammation in female rats. Am J Physiol Renal Physiol. 297:F1038–F1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang YC, Fraser MO, Yu Y, Chancellor MB, de Groat WC, Yoshimura N (2001) The role of bladder afferent pathways in bladder hyperactivity induced by the intravesical administration of nerve growth factor. J Urol 165:975–979

    Article  CAS  PubMed  Google Scholar 

  • Clemens JQ, Mullins C, Kusek JW, et al. (2014) The MAPP research network: a novel study of urologic chronic pelvic pain syndromes. BMC Urol 14:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemow DB, Steers WD, McCarty R, Tuttle JB (1998) Altered regulation of bladder nerve growth factor and neurally mediated hyperactive voiding. Am J Phys 275:R1279–R1286

    CAS  Google Scholar 

  • Corrow K, Girard BM, Vizzard MA (2010) Expression and response of acid-sensing ion channels in urinary bladder to cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 298:F1130–F1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmitrieva N, McMahon SB (1996) Sensitisation of visceral afferents by nerve growth factor in the adult rat. Pain 66:87–97

    Article  CAS  PubMed  Google Scholar 

  • Doi T, Kamo I, Imai S, et al. (1999) Effects of TAK-637, a tachykinin receptor antagonist, on lower urinary tract function in the guinea pig. Eur J Pharmacol 383:297–303

    Article  CAS  PubMed  Google Scholar 

  • Doi T, Kamo I, Imai S, Okanishi S, Ikeura Y, Natsugari H (2000) Effects of TAK-637, a tachykinin receptor antagonist, on the micturition reflex in guinea pigs. Eur J Pharmacol 395:241–246

    Article  CAS  PubMed  Google Scholar 

  • Evans RJ, Moldwin RM, Cossons N, Darekar A, Mills IW, Scholfield D (2011) Proof of concept trial of tanezumab for the treatment of symptoms associated with interstitial cystitis. J Urol 185:1716–1721

    Article  CAS  PubMed  Google Scholar 

  • Fahrenkrug J, Hannibal J (1998a) PACAP in visceral afferent nerves supplying the rat digestive and urinary tracts. Ann N Y Acad Sci 865:542–546

    Article  CAS  PubMed  Google Scholar 

  • Fahrenkrug J, Hannibal J (1998b) Pituitary adenylate cyclase activating polypeptide immunoreactivity in capsaicin-sensitive nerve fibres supplying the rat urinary tract. Neuroscience 83:1261–1272

    Article  CAS  PubMed  Google Scholar 

  • Fox-Threlkeld JA, McDonald TJ, Woskowska Z, Iesaki K, Daniel EE (1999) Pituitary adenylate cyclase-activating peptide as a neurotransmitter in the canine ileal circular muscle. J Pharmacol Exp Ther 290:66–75

    CAS  PubMed  Google Scholar 

  • Frenkl TL, Zhu H, Reiss T, Seltzer O, Rosenberg E, Green S (2010) A multicenter, double-blind, randomized, placebo controlled trial of a neurokinin-1 receptor antagonist for overactive bladder. J Urol 184:616–622

    Article  CAS  PubMed  Google Scholar 

  • Girard BM, May V, Bora SH, Fina F, Braas KM (2002) Regulation of neurotrophic peptide expression in sympathetic neurons: quantitative analysis using radioimmunoassay and real-time quantitative polymerase chain reaction. Regul Pept. 109(1-3):89–101

  • Girard BM, Wolf-Johnston A, Braas KM, Birder LA, May V, Vizzard MA (2008) PACAP-mediated ATP release from rat urothelium and regulation of PACAP/VIP and receptor mRNA in micturition pathways after cyclophosphamide (CYP)-induced cystitis. J Mol Neurosci 36:310–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Malley SE, Braas KM, May V, Vizzard MA (2010) PACAP/VIP and receptor characterization in micturition pathways in mice with overexpression of NGF in urothelium. J Mol Neurosci 42:378–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Malley SE, Vizzard MA (2011) Neurotrophin/receptor expression in urinary bladder of mice with overexpression of NGF in urothelium. Am J Physiol Renal Physiol. 300:F345–F355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard BM, Tompkins JD, Parsons RL, May V, Vizzard MA (2012) Effects of CYP-induced cystitis on PACAP/VIP and receptor expression in micturition pathways and bladder function in mice with overexpression of NGF in urothelium. J Mol Neurosci 48:730–743

    Article  CAS  PubMed  Google Scholar 

  • Girard BM, Merrill L, Malley S, Vizzard MA (2013) Increased TRPV4 expression in urinary bladder and lumbosacral dorsal root ganglia in mice with chronic overexpression of NGF in urothelium. J Mol Neurosci 51:602–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez EJ, Girard BM, Vizzard MA (2013) Expression and function of transforming growth factor-beta isoforms and cognate receptors in the rat urinary bladder following cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 305:F1265–F1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez EJ, Peterson A, Malley S, et al. (2015) The effects of tempol on cyclophosphamide-induced oxidative stress in rat micturition reflexes. ScientificWorldJournal 2015:545048

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwood-Van Meerveld B, Mohammadi E, Tyler K, et al. (2015) Mechanisms of visceral organ crosstalk: importance of alterations in permeability in rodent models. J Urol 194:804–811

    Article  PubMed  Google Scholar 

  • Guerios SD, Wang ZY, Bjorling DE (2006) Nerve growth factor mediates peripheral mechanical hypersensitivity that accompanies experimental cystitis in mice. Neurosci Lett 392:193–197

    Article  CAS  PubMed  Google Scholar 

  • Guerios SD, Wang ZY, Boldon K, Bushman W, Bjorling DE (2008) Blockade of NGF and trk receptors inhibits increased peripheral mechanical sensitivity accompanying cystitis in rats. Am J Physiol Regul Integr Comp Physiol. 295:R111–R122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanno PM, Sant GR (2001) Clinical highlights of the National Institute of Diabetes and Digestive and Kidney Diseases/Interstitial Cystitis Association scientific conference on interstitial cystitis. Urology 57:2–6

    Article  CAS  PubMed  Google Scholar 

  • Herrera GM, Braas KM, May V, Vizzard MA (2006) PACAP enhances mouse urinary bladder contractility and is upregulated in micturition reflex pathways after cystitis. Ann N Y Acad Sci 1070:330–336

    Article  CAS  PubMed  Google Scholar 

  • Hu VY, Zvara P, Dattilio A, et al. (2005) Decrease in bladder overactivity with REN1820 in rats with cyclophosphamide induced cystitis. J Urol 173:1016–1021

    Article  PubMed  Google Scholar 

  • Huang EJ, Reichardt LF (2001) Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci 24:677–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaggar SI, Scott HC, Rice AS (1999) Inflammation of the rat urinary bladder is associated with a referred thermal hyperalgesia which is nerve growth factor dependent. Br J Anaesth 83:442–448

    Article  CAS  PubMed  Google Scholar 

  • Jamen F, Laden JC, Bouschet T, Rodriguez-Henche N, Bockaert J, Brabet P (2000) Nerve growth factor upregulates the PAC1 promoter by activating the MAP kinase pathway in rat PC12 cells. Ann N Y Acad Sci 921:390–394

    Article  CAS  PubMed  Google Scholar 

  • Jamen F, Bouschet T, Laden JC, Bockaert J, Brabet P (2002) Up-regulation of the PACAP type-1 receptor (PAC1) promoter by neurotrophins in rat PC12 cells and mouse cerebellar granule cells via the Ras/mitogen-activated protein kinase cascade. J Neurochem 82:1199–1207

    Article  CAS  PubMed  Google Scholar 

  • Jongsma Wallin H, Danielsen N, Johnston JM, Gratto KA, Karchewski LA, Verge VM (2001) Exogenous NT-3 and NGF differentially modulate PACAP expression in adult sensory neurons, suggesting distinct roles in injury and inflammation. Eur J Neurosci 14:267–282

    Article  CAS  PubMed  Google Scholar 

  • Jongsma Wallin H, Pettersson LM, Verge VM, Danielsen N (2003) Effect of anti-nerve growth factor treatment on pituitary adenylate cyclase activating polypeptide expression in adult sensory neurons exposed to adjuvant induced inflammation. Neuroscience 120:325–331

    Article  CAS  PubMed  Google Scholar 

  • Klinger MB, Vizzard MA (2008) Role of p75NTR in female rat urinary bladder with cyclophosphamide-induced cystitis. Am J Physiol Renal Physiol 295:F1778–F1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinger MB, Girard B, Vizzard MA (2008) p75NTR expression in rat urinary bladder sensory neurons and spinal cord with cyclophosphamide-induced cystitis. J Comp Neurol 507:1379–1392

    Article  CAS  PubMed  Google Scholar 

  • Landis JR, Williams DA, Lucia MS, et al. (2014) The MAPP research network: design, patient characterization and operations. BMC Urol 14:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang FX, Bosland MC, Huang H, et al. (2005) Cellular basis of urothelial squamous metaplasia: roles of lineage heterogeneity and cell replacement. J Cell Biol 171:835–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JH, Zhao H, Sun TT (1995) A tissue-specific promoter that can drive a foreign gene to express in the suprabasal urothelial cells of transgenic mice. Proc Natl Acad Sci U S A 92:679–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowe EM, Anand P, Terenghi G, Williams-Chestnut RE, Sinicropi DV, Osborne JL (1997) Increased nerve growth factor levels in the urinary bladder of women with idiopathic sensory urgency and interstitial cystitis. Br J Urol 79:572–577

    Article  CAS  PubMed  Google Scholar 

  • May V, Vizzard MA (2010) Bladder dysfunction and altered somatic sensitivity in PACAP−/− mice. J Urol 183:772–779

    Article  PubMed  PubMed Central  Google Scholar 

  • May V, Beaudet MM, Parsons RL, et al. (1998) Mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP)-induced depolarization of sympathetic superior cervical ganglion (SCG) neurons. Ann N Y Acad Sci 865:164–175

    Article  CAS  PubMed  Google Scholar 

  • Mendell LM, Albers KM, Davis BM (1999) Neurotrophins, nociceptors, and pain. Microsc Res Tech 45:252–261

    Article  CAS  PubMed  Google Scholar 

  • Merrill L, Girard B, Arms L, Guertin P, Vizzard MA (2013a) Neuropeptide/Receptor expression and plasticity in micturition pathways. Curr Pharm Des 19:4411–4422

    Article  CAS  PubMed  Google Scholar 

  • Merrill L, Malley S, Vizzard MA (2013b) Repeated variate stress in male rats induces increased voiding frequency, somatic sensitivity, and urinary bladder nerve growth factor expression. Am J Physiol Regul Integr Comp Physiol. 305:R147–R156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizumoto A, Fujimura M, Ohtawa M, et al. (1992) Pituitary adenylate cyclase activating polypeptide stimulates gallbladder motility in conscious dogs. Regul Pept 42:39–50

    Article  CAS  PubMed  Google Scholar 

  • Mohammed H, Hannibal J, Fahrenkrug J, Santer R (2002) Distribution and regional variation of pituitary adenylate cyclase activating polypeptide and other neuropeptides in the rat urinary bladder and ureter: effects of age. Urol Res 30:248–255

    Article  CAS  PubMed  Google Scholar 

  • Moller K, Reimer M, Ekblad E, et al. (1997a) The effects of axotomy and preganglionic denervation on the expression of pituitary adenylate cyclase activating peptide (PACAP), galanin and PACAP type 1 receptors in the rat superior cervical ganglion. Brain Res 775:166–182

    Article  CAS  PubMed  Google Scholar 

  • Moller K, Reimer M, Hannibal J, Fahrenkrug J, Sundler F, Kanje M (1997b) Pituitary adenylate cyclase-activating peptide (PACAP) and PACAP type 1 receptor expression in regenerating adult mouse and rat superior cervical ganglia in vitro. Brain Res 775:156–165

    Article  CAS  PubMed  Google Scholar 

  • Ng SY, Chow BK, Kasamatsu J, Kasahara M, Lee LT (2012) Agnathan VIP, PACAP and their receptors: ancestral origins of today’s highly diversified forms. PLoS ONE 7:e44691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okragly AJ, Niles AL, Saban R, et al. (1999) Elevated tryptase, nerve growth factor, neurotrophin-3 and glial cell line-derived neurotrophic factor levels in the urine of interstitial cystitis and bladder cancer patients. J Urol 161:438–441 discussion 441-432

    Article  CAS  PubMed  Google Scholar 

  • Onaga T, Harada Y, Okamoto K (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) induces duodenal phasic contractions via the vagal cholinergic nerves in sheep. Regul Pept 77:69–76

    Article  CAS  PubMed  Google Scholar 

  • Pezet S, McMahon SB (2006) Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci 29:507–538

    Article  CAS  PubMed  Google Scholar 

  • Sandor K, Bolcskei K, McDougall JJ, et al. (2009) Divergent peripheral effects of pituitary adenylate cyclase-activating polypeptide-38 on nociception in rats and mice. Pain 141:143–150

    Article  CAS  PubMed  Google Scholar 

  • Schnegelsberg B, Sun TT, Cain G, et al. (2010) Overexpression of NGF in mouse urothelium leads to neuronal hyperinnervation, pelvic sensitivity, and changes in urinary bladder function. Am J Physiol Regul Integr Comp Physiol. 298:R534–R547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seebeck J, Lowe M, Kruse ML, et al. (2002) The vasorelaxant effect of pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in isolated rat basilar arteries is partially mediated by activation of nitrergic neurons. Regul Pept 107:115–123

    Article  CAS  PubMed  Google Scholar 

  • Studeny S, Cheppudira BP, Meyers S, et al. (2008) Urinary bladder function and somatic sensitivity in vasoactive intestinal polypeptide (VIP)-/- mice. J Mol Neurosci 36:175–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundler F, Ekblad E, Hannibal J, et al. (1996) Pituitary adenylate cyclase-activating peptide in sensory and autonomic ganglia: localization and regulation. Ann N Y Acad Sci 805:410–426 discussion 427-418

    Article  CAS  PubMed  Google Scholar 

  • Vizzard MA (2000a) Changes in urinary bladder neurotrophic factor mRNA and NGF protein following urinary bladder dysfunction. Exp Neurol 161:273–284

    Article  CAS  PubMed  Google Scholar 

  • Vizzard MA (2000b) Up-regulation of pituitary adenylate cyclase-activating polypeptide in urinary bladder pathways after chronic cystitis. J Comp Neurol 420:335–348

    Article  CAS  PubMed  Google Scholar 

  • Zizzo MG, Mule F, Serio R (2004) Interplay between PACAP and NO in mouse ileum. Neuropharmacology 46:449–455

    Article  CAS  PubMed  Google Scholar 

  • Zvara P, Vizzard MA (2007) Exogenous overexpression of nerve growth factor in the urinary bladder produces bladder overactivity and altered micturition circuitry in the lumbosacral spinal cord. BMC Physiol 7:9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret A. Vizzard.

Ethics declarations

Funding

This work was funded by National Institutes of Health (NIH) grants DK051369 (MAV), DK060481 (MAV), and DK065989 (MAV). This publication was also supported by grants from the National Center for Research Resources (5 P30 RR 032135) and the National Institute of General Medical Sciences (8 P30 GM 103498) from the NIH.

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, B.M., Malley, S.E., Mathews, M.M. et al. Intravesical PAC1 Receptor Antagonist, PACAP(6–38), Reduces Urinary Bladder Frequency and Pelvic Sensitivity in NGF-OE Mice. J Mol Neurosci 59, 290–299 (2016). https://doi.org/10.1007/s12031-016-0764-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0764-1

Keywords

Navigation