Skip to main content
Log in

Picroside II Inhibits the MEK-ERK1/2-COX2 Signal Pathway to Prevent Cerebral Ischemic Injury in Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The objective of this study is to explore the neuroprotective effect and mechanism of picroside II on ERK1/2-COX2 signal transduction pathway after cerebral ischemic injury in rats. Focal cerebral ischemic models were established by inserting monofilament threads into the middle cerebral artery in 200 Wistar rats. Twenty four rats were randomly selected into control group, while the other rats were randomly divided into six groups: model group, picroside group, lipopolysaccharide (LPS) with picroside group, U0126 with picroside group, LPS group, and U0126 group with each group containing three subgroups with ischemia at 6, 12, and 24 h. Neurobehavioral function in the rats was evaluated by modified neurological severity score points (mNSS) test; structure of neurons was observed using hematoxylin-eosin (HE) staining; apoptotic cells were counted using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay; expressions of phosphorylated mitogen/extracellular signal-regulated kinase kinas1/2 (pMEK1/2), phosphorylated extracellular signal-regulated protein kinase1/2 (pERK1/2), and cyclooxygenase (COX2) in the cortex were determined using immunohistochemistry (IHC) and Western blot (WB); and real-time PCR was used to determine the level of COX2 mRNA. The neurological behavioral malfunction appeared in all rats with middle cerebral artery occlusion (MCAO). In the model group, neuron damage was extensive, while the neurobehavioral function score, apoptotic cell index, expression of pMEK1/2, pERK1/2, and COX2 and the level of COX2 mRNA increased significantly when compared to the control group. The peak COX2 mRNA level was in ischemia 12 h, prior to the peak in COX2 protein expression. In the picroside and U0126 groups, the neurological behavioral function was improved, and the number of apoptotic cells and the expression of pMEK1/2, pERK1/2, and COX2 decreased significantly when compared to the model group. In the LPS with picroside group, at ischemia 6 h neuron damage was extensive, and pMEK1/2, pERK1/2, and COX2 expression were much higher than in the model group. But at ischemia 12 and 24 h, the expression of pMEK1/2, pERK1/2, and COX2 decreased slightly, and the neurobehavioral function also improved slightly. In LPS group, neuron damage was extensive, pMEK1/2, pERK1/2, and COX2 expression was still at a high level, and COX2 mRNA peak arrived at ischemic 12 h. Picroside II downregulates COX2 expression after MCAO by inhibiting MEK-ERK1/2 in rats to protect neurons from apoptosis and inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bauer MK, Lieb K, Schulze-Osthoff K, Berger M, Gebicke-Haerter PJ, Bauer J, Fiebich BL (1997) Expression and regulation of cyclooxygenase-2 in rat microglia. Eur J Biochem 243(3):726–731

    Article  CAS  PubMed  Google Scholar 

  • Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, Pozzan T, Volterra A (1998) Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391(4):281–285

    CAS  PubMed  Google Scholar 

  • Bokemeyer D, Sorokin A, Dunn MJ (1996) Multiple intracellular MAP kinase signaling cascades. Kidney Int 49(5):1187–1198

    Article  CAS  PubMed  Google Scholar 

  • Candelario-Jalil E, González-Falcón A, García-Cabrera M, Alvarez D, Al-Dalain S, Martínez G, León OS, Springer JE (2003) Assessment of the relative contribution of COX-1 and COX-2 isoforms to ischemia-induced oxidative damage and neurodegeneration following transient global cerebral ischemia. J Neurochem 86(3):545–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32(11):2682–688

    Article  CAS  PubMed  Google Scholar 

  • Collaço-Moraes Y, Aspey B, Harrison M, de Belleroche J (1996) Cyclo-oxygenase-2 messenger RNA induction in focal cerebral ischemia. J Cereb Blood Flow Metab 16(6):1366–1372

    Article  PubMed  Google Scholar 

  • Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258(6):479–517

    Article  CAS  PubMed  Google Scholar 

  • Guan Z, Buckman SY, Miller BW, Springer LD, Morrison AR (1998) Morrison, Interleukin-1β-induced cyclooxygenase-2 expression requires activation of both c-Jun NH2-terminal kinase and p38 MAPK signal pathways in rat renal mesangial cells. J Biol Chem 273(44):28670–28676

    Article  CAS  PubMed  Google Scholar 

  • Guo YL, Xu XL, Li Q, Li Z, Du F (2010) Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats. Behav Brain Funct 6(1):43–49

    Article  PubMed Central  PubMed  Google Scholar 

  • Henriksson M, Stenman E, Vikman P, Edvinsson L (2007) MEK1/2 inhibition attenuates vascular ETA and ETB receptor alterations after cerebral ischaemia. Exp Brain Res 178(4):470–476

    Article  CAS  PubMed  Google Scholar 

  • Hwang D, Jang BC, Yu G, Boudreau M (1997) Expression of mitogen-inducible cyclooxygenase induced by lipopolysaccharide. Biochem Pharmacol 54(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Hwang SK, Yu K, Anderson HK, Lee YS, Lee KH, Prats AC, Morello D, Beck GR Jr, Cho MH (2006) A high inorganic phosphate diet perturbs brain growth, alters AKT-ERK signaling and results in changes in cap-dependent translation. Toxicol Sci 90(1):221–229

    Article  CAS  PubMed  Google Scholar 

  • Kim R, Emi M, Tanabe K, Murakami S, Uchida Y, Arihiro K (2006) Regulation and interplay of apoptotic and non-apoptotic cell death. J Pathol 208(3):319–326

    Article  CAS  PubMed  Google Scholar 

  • Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z, Lehotsky J (2012) Intracellular signaling MAPK pathway after cerebral ischemia reperfusion injury. Neurochem Res 37(7):1568–1577

    Article  CAS  PubMed  Google Scholar 

  • Levi G, Minghetti L, Aloisi F (1998) Regulation of prostanoid synthesis in microglial cells and effects of prostaglandin E2 on microglial functions. Biochimie 80(11):899–904

    Article  CAS  PubMed  Google Scholar 

  • Li P, Matsunaga K, Yamakuni T, Ohizumi Y (2000) Potentiation of nerve growth factor-action by picrosides I and II, natural iridoids, in PC12D cells. Eur J Pharmacol 406(2):203–208

    Article  CAS  PubMed  Google Scholar 

  • Li P, Matsunaga K, Yamakuni T, Ohizumi Y (2002) Picrosides I and II, selective enhancers of the mitogen-activated protein kinase-dependent signaling pathway in the action of neuritogenic substances on PC12D cells. Life Sci 71(15):1821–1835

    Article  CAS  PubMed  Google Scholar 

  • Li X, Xu XY, Li Z, Guo YL, Li Q, Li XD, Zhou Z (2010a) Picroside II down-regulates matrix metalloproteinase-9 expression following cerebral ischemia/reperfusion injury in rats[J]. Neural Regen Res 5(18):1403–1407

    CAS  Google Scholar 

  • Li Q, Li Z, Xu XY, Guo YL, Du F (2010b) Neuroprotective properties of picroside II in rat model of focal cerebral ischemia. Int J Mol Sci 11(11):4580–4590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Y, Kang J, Bai Y, Zhang Y, Li H, Yang X, Xiang X, Wang X, Huang Y, Su J, Chen Y, Li B, Sun L (2014) Hyperbaric oxygen enlarges the area of brain damage in MCAO rats by blocking autophagy via ERK1/2 activation. Eur J Pharmacol 728(1):93–99

    Article  CAS  PubMed  Google Scholar 

  • Luo YM, Qin Z, Chen J (2001) Protective effects of COX2 gene knockout on brain from ischemic injury in mice. Chin J Geriatric Heart Brain Vessel Dis 3(5):144–54

    Google Scholar 

  • Maddahi A, Ansar S, Chen Q, Edvinsson L (2011) Blockade of the MEK/ERK pathway with a Raf inhibitor prevents activation of pro-inflammatory mediators in cerebral arteries and reduction in cerebral blood flow after subarachnoid hemorrhage in a rat model. J Cereb Blood Flow Metab 31(1):144–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minghetti L, Polazzi E, Nicolini A, Creminon C, Levi G (1997) Up-regulation of cyclooxygenase-2 expression in cultured microglia by prostaglandin E2, cyclic AMP and non-steroidal anti-inflammatory drugs. Eur J Neurosci 9(5):934–940

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto O, Tamae K, Kasai H, Hirakawa H, Hayashida Y, Konishi R, Itano T (2003) Suppression of hyperemia and DNA oxidation by indomethacin in cerebral ischemia. Eur J Pharmacol 459(2-3):179–86

    Article  CAS  PubMed  Google Scholar 

  • Nagasawa H, Kogure K (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20(8):1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Namura S, Nagata I, Kikuchi H, Andreucci M, Alessandrini A (2000) Serine-threonine protein kinase Akt does not mediate ischemic tolerance after global ischemia in the gerbil. J Cereb Blood Flow Metab 20(9):1301–1305

    Article  CAS  PubMed  Google Scholar 

  • Namura S, Iihara K, Takami S et al (2001) Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. PNAS 98(20):11569–11574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pei HT, Su X, Zhao L, Li HY, Guo YL, Zhang MZ, Xin H (2012) Primary study for the therapeutic dose and time window of picroside II in treating cerebral ischemic injury in rats. Int J Mol Sci 13(3):2551–2562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66(2):105–143

    Article  CAS  PubMed  Google Scholar 

  • Schweyer S, Soruri A, Meschter O, Heintze A, Zschunke F, Miosge N, Thelen P, Schlott T, Radzun HJ, Fayyazi A (2004) Cisplatin-induced apoptosis in human malignant testicular germ cell lines depends on MEK ⁄ERK activation. Br J Cancer 91(3):589–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shioda N, Han F, Fukunaga K (2009) Role of AKT and ERK signaling in the neurogenesis following brain ischemia. Inter Review Neurobiol 85(1):375–387

    Article  CAS  Google Scholar 

  • Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271(52):33157–33160

    Article  CAS  PubMed  Google Scholar 

  • Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182

    Article  CAS  PubMed  Google Scholar 

  • Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, Reynolds I, Klann E, Angiolieri MR, Johnson JW, DeFranco DB (2000) Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 275(16):12200–12206

    Article  CAS  PubMed  Google Scholar 

  • Stanimirovic D, Shapiro A, Wong J, Hutchison J, Durkin J (1997) The induction of ICAM-1 in human cerebromicrovascular endothelial cells (HCEC) by ischemia-like conditions promotes enhanced neutrophil/HCEC adhesion. J Neuroimmunol 76(1-2):193–205

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Li XD, Wang L, Qin LH, Guo YL, Zhou Z (2011) Anti-oxidant effect of picroside II in a rat model of cerebral ischemia/reperfusion injury. Neural Regen Res 6(15):1141–1146

    CAS  Google Scholar 

  • Wang X, Martindale JL, Holbrook NJ (2000) Requirement for ERK activation in cisplatin-induced apoptosis[J]. J Biol Chem 275(50):39435–39443

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Wang H, Xu L, Rozanski DJ, Sugawara T, Chan PH, Trzaskos JM, Feuerstein GZ (2003) Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis. J Pharmacol Exp Ther 304(1):172–178

    Article  CAS  PubMed  Google Scholar 

  • Wang ZQ, Wu DC, Huang FP, Yang GY (2004a) Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res 996(1):55–56

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Qin L, Liu B, Liu Y, Wilson B, Eling TE, Langenbach R, Taniura S, Hong JS (2004b) Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 88(4):939–947

    Article  CAS  PubMed  Google Scholar 

  • Ye Z, Wang N, Xia P, Wang E, Yuan Y, Guo Q (2012) Delayed administration of parecoxib, a specific COX-2 inhibitor, attenuated postischemic neuronal apoptosis by phosphorylation Akt and GSK-3β. Neurochem Res 37(2):321–329

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Chen RW, Chen CQ, Steven GH (2004) Role of Role of cyclooxygenase-2 in injury induced by hypoxia/reoxygenation in cultured rat cortical neurons. Chin J Pathophysiol 20(12):2280–2283

    CAS  Google Scholar 

  • Zhao Y, Patzer A, Herdegen T, Gohlke P, Culman J (2006) Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB J 20(8):1162–1175

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Guo YL, Ji XJ, Zhang MZ (2014) The neuroprotective effect of picroside II via regulating the expression of myelin basic protein after cerebral ischemia injury in rats. BMC Neurosci 15(2):25–33

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunliang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhai, L., Zhang, H. et al. Picroside II Inhibits the MEK-ERK1/2-COX2 Signal Pathway to Prevent Cerebral Ischemic Injury in Rats. J Mol Neurosci 57, 335–351 (2015). https://doi.org/10.1007/s12031-015-0623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0623-5

Keywords

Navigation