Skip to main content

Advertisement

Log in

Organic Anion Transporter 1 Deficiency Accelerates Learning and Memory Impairment in tg2576 Mice by Damaging Dendritic Spine Morphology and Activity

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

To investigate whether and how organic anion transporter 1 (OAT1) is involved in the process of Alzheimer’s disease (AD), we crossbred OAT1 knockout mice with tg2576, the widely used AD model mice. Results here showed the heterozygous OAT1-deficient tg2576 mice developed a learning- and memory-related behavior deficiency and higher soluble Abeta amount in early stage (3 months old). Furthermore, the heterozygous mice brain slice also showed impaired long-term potentiation (LTP) and spontaneous excitatory postsynaptic currents (sEPSC). By crossbreeding heterozygous OAT1-deficient tg2576 mice with Thy-1 YFP mice, we got autofluoresced (layer 4/5 cortical neuron) heterozygous mice. By using two-photon microscope in the direct observation of mice brain in vivo or single photon confocal on slices, compared with control tg2576 mice, we found that the OAT1-deficient mice showed a higher spine numbers but with a much lesser maturity extent. Finally, by using glutamate uncaging method, we induced chemical LTP in brain slices and found that OAT1-deficient mice showed abnormal chemical-induced LTP, which meant that the deficient behavior may be caused by abnormal spine morphology and activity. Our results indicated OAT1 may be involved in AD process by regulating spine morphology and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bahn A, Ljubojevic M, Lorenz H, Schultz C, Ghebremedhin E, Ugele B, Sabolic I, Burckhardt G, Hagos Y (2005) Murine renal organic anion transporters mOAT1 and mOAT3 facilitate the transport of neuroactive tryptophan metabolites. Am J Physiol Cell Physiol 289:1075–1084

    Article  Google Scholar 

  • Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82:444–459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cousins R, Wood CE (2010) Expression of organic anion transporters 1 and 3 in the ovine fetal brain during the latter half of gestation. Neurosci Lett 484:22–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eraly SA, Hamilton BA, Nigam SK (2003) Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochem Biophys Res Commun 300:333–342

    Article  CAS  PubMed  Google Scholar 

  • Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, Barshop BA, Kaler G, Nigam SK (2006) Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem 281:5072–5083

    Article  CAS  PubMed  Google Scholar 

  • Fu AL, Zhang XM, Sun ML (2005) Antisense inhibition of acetylcholinesterase gene expression for treating cognition deficit in Alzheimer’s disease model mice. Brain Res 1066:10–15

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Liu A, Huang M, Cheng L, Kang H, Xu F, Liu X, Lian L, Liang Q, Jiang H, Zhang C, Zhu S (2014) Lower serum uric acid levels in cerebral amyloid angiopathy: a pilot study. Neurol Sci 35:1035–1039

    Article  PubMed  Google Scholar 

  • Jin L, Kikuchi R, Saji T, Kusuhara H, Sugiyama Y (2012) Regulation of tissue-specific expression of renal organic anion transporters by hepatocyte nuclear factor 1 α/β and DNA methylation. J Pharmacol Exp Ther 340:648–655

    Article  CAS  PubMed  Google Scholar 

  • Koepsell H, Endou H (2004) The SLC22 drug transporter family. Pflugers Arch 447(5):666–676

    Article  CAS  PubMed  Google Scholar 

  • Kwon HB, Sabatini BL (2011) Glutamate induces de novo growth of functional spines in developing cortex. Nature 474:100–104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris AW, Carare RO, Schreiber S, Hawkes CA (2014) The cerebrovascular basement membrane: role in the clearance of β-amyloid and cerebral amyloid angiopathy. Front Aging Neurosci 6:251–260

    Article  PubMed Central  PubMed  Google Scholar 

  • Mousavi M, Jonsson P, Antti H, Adolfsson R, Nordin A, Bergdahl J, Eriksson K, Moritz T, Nilsson LG, Nyberg L (2014) Serum metabolomic biomarkers of dementia. Dement Geriatr Cogn Disord Extra 4:252–262

    Article  Google Scholar 

  • Nagle MA, Wu W, Eraly SA, Nigam SK (2013) Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neurosci Lett 534:133–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nakanishi T, Ohya K, Shimada S, Anzai N, Tamai I (2013) Nephrol dial. Functional cooperation of URAT1 (SLC22A12) and URATv1 (SLC2A9) in renal reabsorption of urate. Transplantation 28:603–611

    CAS  Google Scholar 

  • Orr AL, Hanson JE, Li D, Klotz A, Wright S, Schenk D, Seubert P, Madison DV (2014) β-Amyloid inhibits E-S potentiation through suppression of cannabinoid receptor 1-dependent synaptic disinhibition. Neuron 82:1334–1345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Price KA, Varghese M, Sowa A, Yuk F, Brautigam H, Ehrlich ME, Dickstein DL (2014) Altered synaptic structure in the hippocampus in a mouse model of Alzheimer’s disease with soluble amyloid-β oligomers and no plaque pathology. Mol Neurodegener 9:41–54

    Article  PubMed Central  PubMed  Google Scholar 

  • Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A 95:4635–4640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sauer SW, Opp S, Mahringer A, Kamiński MM, Thiel C, Okun JG, Fricker G, Morath MA, Kölker S (2010) Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood–brain barrier and the choroid plexus. Biochim Biophys Acta 1802:552–560

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Zhou T, Zhou L, Chen Q, Yan Y, Yang H, Zhong K, Chui D (2012) Formononetin protects neurons against hypoxia-induced cytotoxicity through upregulation of ADAM10 and sAβPPα. J Alzheimers Dis 28:795–808

    CAS  PubMed  Google Scholar 

  • Sun M, Bernard LP, Dibona VL, Wu Q, Zhang H (2013) Calcium phosphate transfection of primary hippocampal neurons. J Vis Exp 12:e50808

    Google Scholar 

  • Tomioka NH, Nakamura M, Doshi M, Deguchi Y, Ichida K, Morisaki T, Hosoyamada M (2013) Ependymal cells of the mouse brain express urate transporter 1 (URAT1). Fluids Barriers CNS 10:31

    Article  PubMed Central  PubMed  Google Scholar 

  • Vallon V, Eraly SA, Rao SR, Gerasimova M, Rose M, Nagle M, Anzai N, Smith T, Sharma K, Nigam SK, Rieg T (2012) A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am J Physiol Ren Physiol 302:F1293–F1299

    Article  CAS  Google Scholar 

  • Vázquez-Mellado J, Jiménez-Vaca AL, Cuevas-Covarrubias S, Alvarado-Romano V, Pozo-Molina G, Burgos-Vargas R (2007) Molecular analysis of the SLC22A12 (URAT1) gene in patients with primary gout. Rheumatology (Oxford) 46(2):215–219

    Article  Google Scholar 

  • Wang H, Sun M, Yang H, Tian X, Tong Y, Zhou T, Zhang T, Chui D (2014) Hypoxia-inducible factor-1α mediates up-regulation of neprilysin by histone deacetylase-1 under hypoxia condition in neuroblastoma cells. J Neurochem 131:4–11

    Article  CAS  PubMed  Google Scholar 

  • Williams PA, Howell GR, Barbay JM, Braine CE, Sousa GL, John SW, Morgan JE (2013) Retinal ganglion cell dendritic atrophy in DBA/2J glaucoma. PLoS One 8:e72282

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu Y, Zhou L, Sun M, Zhou T, Zhong K, Wang H, Liu Y et al (2012) Xylocoside G reduces amyloid-β induced neurotoxicity by inhibiting NF-κB signaling pathway in neuronal cells. J Alzheimers Dis 30:263–275

    CAS  PubMed  Google Scholar 

  • Zhou T, He Q, Tong Y, Zhan R, Xu F, Fan D, Guo X, Han H, Qin S, Chui D (2014) Phospholipid transfer protein (PLTP) deficiency impaired blood–brain barrier integrity by increasing cerebrovascular oxidative stress. Biochem Biophys Res Commun 445:352–356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Guangdong Province (No. 2011B080701007)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlin Wu.

Additional information

Xinlin Wu and Jianqing Zhang contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Figure S1

A, Latency to find the platform in water maze escape task. B, Frequency of entries into the non-exiting arms. Data were expressed as Mean ± SEM, n = 6 for each group. Statistical significance was determined using the Student’s t test. C Extracellular LTP recordings in hippocampal slices. (GIF 11 kb)

High resolution image (TIFF 3105 kb)

Figure S2

The original images for Fig. 3a. (GIF 10 kb)

High resolution image (TIFF 8500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, J., Liu, H. et al. Organic Anion Transporter 1 Deficiency Accelerates Learning and Memory Impairment in tg2576 Mice by Damaging Dendritic Spine Morphology and Activity. J Mol Neurosci 56, 730–738 (2015). https://doi.org/10.1007/s12031-015-0507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0507-8

Keywords

Navigation