Skip to main content
Log in

Short-Term Cuprizone Feeding Verifies N-Acetylaspartate Quantification as a Marker of Neurodegeneration

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Proton magnetic resonance spectroscopy (1H-MRS) is a quantitative MR imaging technique often used to complement conventional MR imaging with specific metabolic information. A key metabolite is the amino acid derivative N-Acetylaspartate (NAA) which is an accepted marker to measure the extent of neurodegeneration in multiple sclerosis (MS) patients. NAA is catabolized by the enzyme aspartoacylase (ASPA) which is predominantly expressed in oligodendrocytes. Since the formation of MS lesions is paralleled by oligodendrocyte loss, NAA might accumulate in the brain, and therefore, the extent of neurodegeneration might be underestimated. In the present study, we used the well-characterized cuprizone model. There, the loss of oligodendrocytes is paralleled by a reduction in ASPA expression and activity as demonstrated by genome-wide gene expression analysis and enzymatic activity assays. Notably, brain levels of NAA were not increased as determined by gas chromatography–mass spectrometry and 1H-MRS. These important findings underpin the reliability of NAA quantification as a valid marker for the paraclinical determination of the extent of neurodegeneration, even under conditions of oligodendrocyte loss in which impaired metabolization of NAA is expected. Future studies have to reveal whether other enzymes are able to metabolize NAA or whether an excess of NAA is cleared by other mechanisms rather than enzymatic metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

1H-MRS:

Proton magnetic resonance spectroscopy

APC:

Adenomatous polyposis coli protein

APP:

Anti-amyloid precursor protein

ASPA:

Aspartoacylase

CC:

Corpus callosum

CNS:

Central nervous system

CD:

Canavan disease

Co:

Control

Cuprizone:

bis-Cyclohexanone oxaldihydrazone

GC/MS:

Gas chromatography–mass spectrometry

GFAP:

Glial fibrillary acid protein

GM:

Gray matter

H.E.:

Haematoxylin–eosin

HPRT:

Hypoxanthin guanine phosphoribosyltransferase

IBA1:

Ionized calcium binding adaptor molecule 1

IHC:

Immunohistochemistry

LFB:

Luxol Fast Blue

MR:

Magnetic resonance

MS:

Multiple sclerosis

MRI:

Conventional magnetic resonance imaging

NAA:

N-Acetylaspartate

NAWM:

Normal-appearing white matter

NAGM:

Normal-appearing grey matter

PAS:

Periodic Acid Schiff

Real-time RT-PCR:

Real-time reverse transcriptase-polymerase chain reaction

References

  • Acs P, Kipp M, Norkute A, Johann S, Clarner T, Braun A, Berente Z, Komoly S, Beyer C (2009) 17beta-estradiol and progesterone prevent cuprizone provoked demyelination of corpus callosum in male mice. Glia 57:807–814

    Article  PubMed  Google Scholar 

  • Acs P, Selak MA, Komoly S, Kalman B (2013) Distribution of oligodendrocyte loss and mitochondrial toxicity in the cuprizone-induced experimental demyelination model. J Neuroimmunol 262:128–131

    Article  CAS  PubMed  Google Scholar 

  • Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    Article  PubMed  Google Scholar 

  • Baslow MH (2003) N-acetylaspartate in the vertebrate brain: metabolism and function. Neurochem Res 28:941–953

    Article  CAS  PubMed  Google Scholar 

  • Baslow MH, Suckow RF, Berg MJ, Marks N, Saito M, Bhakoo KK (2001) Differential expression of carnosine, homocarnosine and N-acetyl-l-histidine hydrolytic activities in cultured rat macroglial cells. J Mol Neurosci 17:351–359

    Article  CAS  PubMed  Google Scholar 

  • Bhakoo KK, Craig TJ, Styles P (2001) Developmental and regional distribution of aspartoacylase in rat brain tissue. J Neurochem 79:211–220

    Article  CAS  PubMed  Google Scholar 

  • Bitsch A, Bruhn H, Vougioukas V, Stringaris A, Lassmann H, Frahm J, Bruck W (1999) Inflammatory CNS demyelination: histopathologic correlation with in vivo quantitative proton MR spectroscopy. AJNR Am J Neuroradiol 20:1619–1627

    CAS  PubMed  Google Scholar 

  • Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 48:893–901

    Article  CAS  PubMed  Google Scholar 

  • Bjartmar C, Battistuta J, Terada N, Dupree E, Trapp BD (2002) N-Acetylaspartate is an axon-specific marker of mature white matter in vivo: a biochemical and immunohistochemical study on the rat optic nerve. Ann Neurol 51:51–58

    Article  CAS  PubMed  Google Scholar 

  • Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348

    Article  CAS  PubMed  Google Scholar 

  • Buschmann JP, Berger K, Awad H, Clarner T, Beyer C, Kipp M (2012) Inflammatory response and chemokine expression in the white matter corpus callosum and gray matter cortex region during cuprizone-induced demyelination. J Mol Neurosci 48:66–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clarner T, Diederichs F, Berger K, Denecke B, Gan L, van der Valk P, Beyer C, Amor S, Kipp M (2012) Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia 60:1468–1480

    Article  PubMed  Google Scholar 

  • Clarner, T., Wieczorek, N., Krauspe, B., Jansen, K., Beyer, C., Kipp, M., 2013. Astroglial redistribution of aquaporin 4 during spongy degeneration in a Canavan disease mouse model. J Mol Neurosci

  • Davie CA, Barker GJ, Webb S, Tofts PS, Thompson AJ, Harding AE, McDonald WI, Miller DH (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118(Pt 6):1583–1592

    Article  PubMed  Google Scholar 

  • Davie CA, Barker GJ, Thompson AJ, Tofts PS, McDonald WI, Miller DH (1997) 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J Neurol Neurosurg Psychiatry 63:736–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Stefano N, Narayanan S, Matthews PM, Francis GS, Antel JP, Arnold DL (1999) In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122(Pt 10):1933–1939

    Article  PubMed  Google Scholar 

  • De Stefano N, Narayanan S, Francis GS, Arnaoutelis R, Tartaglia MC, Antel JP, Matthews PM, Arnold DL (2001) Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 58:65–70

    Article  PubMed  Google Scholar 

  • Dreher W, Busch E, Leibfritz D (2001) Changes in apparent diffusion coefficients of metabolites in rat brain after middle cerebral artery occlusion measured by proton magnetic resonance spectroscopy. Magn Reson Med 45:383–389

    Article  CAS  PubMed  Google Scholar 

  • Dutting S, Brachs S, Mielenz D (2011) Fraternal twins: Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1, two homologous EF-hand containing calcium binding adaptor proteins with distinct functions. Cell Commun Signal 9:2

    Article  PubMed Central  PubMed  Google Scholar 

  • Eckhardt M, Yaghootfam A, Fewou SN, Zoller I, Gieselmann V (2005) A mammalian fatty acid hydroxylase responsible for the formation of alpha-hydroxylated galactosylceramide in myelin. Biochem J 388:245–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395

    Article  CAS  PubMed  Google Scholar 

  • Ferguson B, Matyszak MK, Esiri MM, Perry VH (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120(Pt 3):393–399

    Article  PubMed  Google Scholar 

  • Fernando KT, McLean MA, Chard DT, MacManus DG, Dalton CM, Miszkiel KA, Gordon RM, Plant GT, Thompson AJ, Miller DH (2004) Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain 127:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • Gadea M, Martinez-Bisbal MC, Marti-Bonmati L, Espert R, Casanova B, Coret F, Celda B (2004) Spectroscopic axonal damage of the right locus coeruleus relates to selective attention impairment in early stage relapsing–remitting multiple sclerosis. Brain 127:89–98

    Article  PubMed  Google Scholar 

  • Goldberg J, Daniel M, van Heuvel Y, Victor M, Beyer C, Clarner T, Kipp M (2013) Short-term cuprizone feeding induces selective amino acid deprivation with concomitant activation of an integrated stress response in oligodendrocytes. Cell Mol Neurobiol 33:1087–1098

    Article  CAS  PubMed  Google Scholar 

  • Goldstein FB (1959) Biosynthesis of N-acetyl-l-aspartic acid. Biochim Biophys Acta 33:583–584

    Article  CAS  PubMed  Google Scholar 

  • Graumann U, Reynolds R, Steck AJ, Schaeren-Wiemers N (2003) Molecular changes in normal appearing white matter in multiple sclerosis are characteristic of neuroprotective mechanisms against hypoxic insult. Brain Pathol 13:554–573

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson MC, Dahlqvist O, Jaworski J, Lundberg P, Landtblom AM (2007) Low choline concentrations in normal-appearing white matter of patients with multiple sclerosis and normal MR imaging brain scans. AJNR Am J Neuroradiol 28:1306–1312

    Article  CAS  PubMed  Google Scholar 

  • Haase A, Frahm J, Hanicke W, Matthaei D (1985) 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30:341–344

    Article  CAS  PubMed  Google Scholar 

  • Hartman BK, Agrawal HC, Agrawal D, Kalmbach S (1982) Development and maturation of central nervous system myelin: comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes. Proc Natl Acad Sci U S A 79:4217–4220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Henderson AP, Barnett MH, Parratt JD, Prineas JW (2009) Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol 66:739–753

    Article  PubMed  Google Scholar 

  • Hesse A, Wagner M, Held J, Bruck W, Salinas-Riester G, Hao Z, Waisman A, Kuhlmann T (2010) In toxic demyelination oligodendroglial cell death occurs early and is FAS independent. Neurobiol Dis 37:362–369

    Article  CAS  PubMed  Google Scholar 

  • Huynh JL, Garg P, Thin TH, Yoo S, Dutta R, Trapp BD, Haroutunian V, Zhu J, Donovan MJ, Sharp AJ, Casaccia P (2014) Epigenome-wide differences in pathology-free regions of multiple sclerosis-affected brains. Nat Neurosci 17:121–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15

    Article  PubMed Central  PubMed  Google Scholar 

  • Johann S, Kampmann E, Denecke B, Arnold S, Kipp M, Mey J, Beyer C (2008) Expression of enzymes involved in the prostanoid metabolism by cortical astrocytes after LPS-induced inflammation. J Mol Neurosci 34:177–185

    Article  CAS  PubMed  Google Scholar 

  • Khan O, Shen Y, Caon C, Bao F, Ching W, Reznar M, Buccheister A, Hu J, Latif Z, Tselis A, Lisak R (2005) Axonal metabolic recovery and potential neuroprotective effect of glatiramer acetate in relapsing–remitting multiple sclerosis. Mult Scler 11:646–651

    Article  CAS  PubMed  Google Scholar 

  • Kipp M, Norkute A, Johann S, Lorenz L, Braun A, Hieble A, Gingele S, Pott F, Richter J, Beyer C (2008) Brain-region-specific astroglial responses in vitro after LPS exposure. J Mol Neurosci 35:235–243

    Article  CAS  PubMed  Google Scholar 

  • Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118:723–736

    Article  PubMed  Google Scholar 

  • Kipp M, Gingele S, Pott F, Clarner T, van der Valk P, Denecke B, Gan L, Siffrin V, Zipp F, Dreher W, Baumgartner W, Pfeifenbring S, Godbout R, Amor S, Beyer C (2011a) BLBP-expression in astrocytes during experimental demyelination and in human multiple sclerosis lesions. Brain Behav Immun 25:1554–1568

    Article  CAS  PubMed  Google Scholar 

  • Kipp M, Norkus A, Krauspe B, Clarner T, Berger K, van der Valk P, Amor S, Beyer C (2011b) The hippocampal fimbria of cuprizone-treated animals as a structure for studying neuroprotection in multiple sclerosis. Inflamm Res 60:723–726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirov II, Tal A, Babb JS, Herbert J, Gonen O (2013) Serial proton MR spectroscopy of gray and white matter in relapsing–remitting MS. Neurology 80:39–46

    Article  PubMed Central  PubMed  Google Scholar 

  • Klugmann M, Leichtlein CB, Symes CW, Serikawa T, Young D, During MJ (2005) Restoration of aspartoacylase activity in CNS neurons does not ameliorate motor deficits and demyelination in a model of Canavan disease. Mol Ther 11:745–753

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H, Bartsch U, Montag D, Schachner M (1997) Dying-back oligodendrogliopathy: a late sequel of myelin-associated glycoprotein deficiency. Glia 19:104–110

    Article  CAS  PubMed  Google Scholar 

  • Lax NZ, Campbell GR, Reeve AK, Ohno N, Zambonin J, Blakely EL, Taylor RW, Bonilla E, Tanji K, DiMauro S, Jaros E, Lassmann H, Turnbull DM, Mahad DJ (2012) Loss of myelin-associated glycoprotein in Kearns–Sayre syndrome. Arch Neurol 69:490–499

    Article  PubMed Central  PubMed  Google Scholar 

  • Lund H, Krakauer M, Skimminge A, Sellebjerg F, Garde E, Siebner HR, Paulson OB, Hesse D, Hanson LG (2013) Blood–brain barrier permeability of normal appearing white matter in relapsing–remitting multiple sclerosis. PLoS One 8:e56375

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madhavarao CN, Hammer JA, Quarles RH, Namboodiri MA (2002) A radiometric assay for aspartoacylase activity in cultured oligodendrocytes. Anal Biochem 308:314–319

    Article  CAS  PubMed  Google Scholar 

  • Madhavarao CN, Moffett JR, Moore RA, Viola RE, Namboodiri MA, Jacobowitz DM (2004) Immunohistochemical localization of aspartoacylase in the rat central nervous system. J Comp Neurol 472:318–329

    Article  CAS  PubMed  Google Scholar 

  • Matalon R, Michals K, Kaul R (1995) Canavan disease: from spongy degeneration to molecular analysis. J Pediatr 127:511–517

    Article  CAS  PubMed  Google Scholar 

  • Mattan NS, Ghiani CA, Lloyd M, Matalon R, Bok D, Casaccia P, de Vellis J (2010) Aspartoacylase deficiency affects early postnatal development of oligodendrocytes and myelination. Neurobiol Dis 40:432–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10:1544–1553

    Article  CAS  PubMed  Google Scholar 

  • Mistry N, Abdel-Fahim R, Mougin O, Tench C, Gowland P, Evangelou N (2014) Cortical lesion load correlates with diffuse injury of multiple sclerosis normal appearing white matter. Mult Scler 20:227–233

    Article  PubMed  Google Scholar 

  • Moffett JR, Namboodiri MA, Cangro CB, Neale JH (1991) Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport 2:131–134

    Article  CAS  PubMed  Google Scholar 

  • Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AM (2007) N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 81:89–131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moffett JR, Arun P, Ariyannur PS, Garbern JY, Jacobowitz DM, Namboodiri AM (2011) Extensive aspartoacylase expression in the rat central nervous system. Glia 59:1414–1434

    Article  PubMed Central  PubMed  Google Scholar 

  • Norkute A, Hieble A, Braun A, Johann S, Clarner T, Baumgartner W, Beyer C, Kipp M (2009) Cuprizone treatment induces demyelination and astrocytosis in the mouse hippocampus. J Neurosci Res 87:1343–1355

    Article  CAS  PubMed  Google Scholar 

  • Pott F, Gingele S, Clarner T, Dang J, Baumgartner W, Beyer C, Kipp M (2009) Cuprizone effect on myelination, astrogliosis and microglia attraction in the mouse basal ganglia. Brain Res 1305:137–149

    Article  CAS  PubMed  Google Scholar 

  • Rigotti DJ, Inglese M, Gonen O (2007) Whole-brain N-acetylaspartate as a surrogate marker of neuronal damage in diffuse neurologic disorders. AJNR Am J Neuroradiol 28:1843–1849

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M (1992) Central nervous system demyelination and remyelination in multiple sclerosis and viral models of disease. J Neuroimmunol 40:255–263

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Scheithauer B (1994) Ultrastructure of multiple sclerosis. Ultrastruct Pathol 18:3–13

    Article  CAS  PubMed  Google Scholar 

  • Saadat L, Dupree JL, Kilkus J, Han X, Traka M, Proia RL, Dawson G, Popko B (2010) Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice. Glia 58:391–398

    Article  PubMed Central  PubMed  Google Scholar 

  • Sager TN, Thomsen C, Valsborg JS, Laursen H, Hansen AJ (1999) Astroglia contain a specific transport mechanism for N-acetyl-l-aspartate. J Neurochem 73:807–811

    Article  CAS  PubMed  Google Scholar 

  • Sarchielli P, Presciutti O, Pelliccioli GP, Tarducci R, Gobbi G, Chiarini P, Alberti A, Vicinanza F, Gallai V (1999) Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 122(Pt 3):513–521

    Article  PubMed  Google Scholar 

  • Schirmer L, Merkler D, Konig FB, Bruck W, Stadelmann C (2013) Neuroaxonal regeneration is more pronounced in early multiple sclerosis than in traumatic brain injury lesions. Brain Pathol 23:2–12

    Article  PubMed  Google Scholar 

  • Simmons ML, Frondoza CG, Coyle JT (1991) Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 45:37–45

    Article  CAS  PubMed  Google Scholar 

  • Skripuletz T, Gudi V, Hackstette D, Stangel M (2011) De- and remyelination in the CNS white and grey matter induced by cuprizone: the old, the new, and the unexpected. Histol Histopathol 26:1585–1597

    CAS  PubMed  Google Scholar 

  • Stadelmann C (2011) Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol 24:224–229

    Article  CAS  PubMed  Google Scholar 

  • Su W, Xie Z, Liu S, Calderon LE, Guo Z, Gong MC (2013) Smooth muscle-selective CPI-17 expression increases vascular smooth muscle contraction and blood pressure. Am J Physiol Heart Circ Physiol 305:H104–H113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tallan HH, Moore S, Stein WH (1956) N-Acetyl-l-aspartic acid in brain. J Biol Chem 219:257–264

    CAS  PubMed  Google Scholar 

  • Traka M, Wollmann RL, Cerda SR, Dugas J, Barres BA, Popko B (2008) Nur7 is a nonsense mutation in the mouse aspartoacylase gene that causes spongy degeneration of the CNS. J Neurosci 28:11537–11549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van der Valk P, Amor S (2009) Preactive lesions in multiple sclerosis. Curr Opin Neurol 22:207–213

    PubMed  Google Scholar 

  • Vrenken H, Barkhof F, Uitdehaag BM, Castelijns JA, Polman CH, Pouwels PJ (2005) MR spectroscopic evidence for glial increase but not for neuro-axonal damage in MS normal-appearing white matter. Magn Reson Med 53:256–266

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Matalon R, Bhatia G, Wu G, Li H, Liu T, Lu ZH, Ledeen RW (2007) Bimodal occurrence of aspartoacylase in myelin and cytosol of brain. J Neurochem 101:448–457

    Article  CAS  PubMed  Google Scholar 

  • Wattjes MP, Harzheim M, Lutterbey GG, Klotz L, Schild HH, Traber F (2007) Axonal damage but no increased glial cell activity in the normal-appearing white matter of patients with clinically isolated syndromes suggestive of multiple sclerosis using high-field magnetic resonance spectroscopy. AJNR Am J Neuroradiol 28:1517–1522

    Article  CAS  PubMed  Google Scholar 

  • Wattjes MP, Harzheim M, Lutterbey GG, Bogdanow M, Schild HH, Traber F (2008) High field MR imaging and 1H-MR spectroscopy in clinically isolated syndromes suggestive of multiple sclerosis: correlation between metabolic alterations and diagnostic MR imaging criteria. J Neurol 255:56–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Helga Helten, Petra Ibold and Wouter Gerritsen for excellent technical assistance. This study was supported by a grant from ProMyelo - SFZ

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Kipp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krauspe, B.M., Dreher, W., Beyer, C. et al. Short-Term Cuprizone Feeding Verifies N-Acetylaspartate Quantification as a Marker of Neurodegeneration. J Mol Neurosci 55, 733–748 (2015). https://doi.org/10.1007/s12031-014-0412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0412-6

Keywords

Navigation