Skip to main content

Advertisement

Log in

Genetic Evidence for the Involvement of Variants at APOE, BIN1, CR1, and PICALM Loci in Risk of Late-Onset Alzheimer’s Disease and Evaluation for Interactions with APOE Genotypes

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common form of dementia in older population. Growing evidence of genetic background that predisposes individuals to AD has been reported as the risk factors in recent years. The Department of Medical Genetics and the Immunology Research Centre investigated the distribution of 11 polymorphisms in 160 patients with late onset AD (LOAD) and in 163 healthy controls, using the sequencing technique. All participants were of Turkish Azeri ethnicity. We compared allele and genotype frequencies between the LOAD patients and control subjects using a chi-square or Fisher’s exact test. Alleles and genotypes of APOE, PICALM rs3851179 and rs541458, and the BIN1 gene rs744373 polymorphism were significantly different between LOAD and control groups. The frequencies of the other investigated alleles were similar in the two groups. We also analyzed the association of BIN1, CR1 and PICALM SNPs with LOAD in subgroups stratified by the presence or absence of the APOE ε4 allele. After adjusting for APOE, statistical analysis revealed that the association with PICALM rs541458 and BIN1 rs744373 were only significant among subjects without the APOE ε4 allele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

  • Barberger-Gateau P, Samieri C, Catherine F, Plourde M (2011) Dietary omega 3 polyunsaturated fatty acids and Alzheimer’s disease: interaction with apolipoprotein E genotype. Curr Alzheimer Res 8(5):479–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blacker D, Haines JL, Rodes L et al (1997) ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48:139–147

    Article  CAS  PubMed  Google Scholar 

  • Corneveaux JJ, Myers AJ, Allen AN et al (2010) Association of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 19(16):3295–301

  • Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S (2006) Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiatry 63:168–174

    Article  PubMed  Google Scholar 

  • Gharesouran J, Rezazadeh M, Ghojazadeh M et al (2013a) Association of CALHM1 gene polymorphism with late onset alzheimer disease. Middle East J Med Genet 2(2):50–54

  • Gharesouran J, Rezazadeh M, Mohaddes Ardebili SM M et al (2013b) Investigation of five polymorphic DNA markers associated with late onset alzheimer disease. Genetika 45(2):503–514

  • Goate A, Chartier-Harlin MC, Mullan M, Brown J et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

  • Gozalpour E, Kamali K, Mohammd K et al (2010) Association between Alzheimer’s disease and apolipoprotein E polymorphisms. Iran J Publ Health 39:1–6

    CAS  Google Scholar 

  • Gyungah J, Adam CN, Gary WB (2010) Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67(12):1473–1484

    Article  Google Scholar 

  • Harel A, Wu F, Mattson MP, Morris CM, Yao PJ (2008) Evidence for CALM in directing VAMP2 trafficking. Traffic 9:417–429

    Article  CAS  PubMed  Google Scholar 

  • Harold D, Abraham R, Hollingworth P et al (2009) Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease, and shows evidence for additional susceptibility genes. Nat Genet 41(10):1088–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hostage AC, Choudhury K, Doraiswamy PM et al (2013) Dissecting the gene dose-effects of the APOE e4 and e2 alleles on hippocampal volumes in aging and Alzheimer’s disease. PLoS ONE 8(2):e54483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu X, Pickering E, Liu CY et al (2011) Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer’s disease. PLoS ONE 6(2):e16616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones L, Harold D, Williams J (2010) Genetic evidence for the involvement of lipid metabolism in Alzheimer’s disease. Biochim Biophys Acta 1801:754–761

    Article  CAS  PubMed  Google Scholar 

  • Jun G, Naj AC, Beecham GW, Wang L et al (2010) Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 67:1473–1484

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamboh MI, Minster RL, Demirci FY (2012a) Association of CLU and PICALM variants with Alzheimer’s disease. Neurobiol Aging 33(3):518–521

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamboh MI, Demirci FY, Wang X et al (2012b) Genome-wide association study of Alzheimer’s disease. Transl Psychiatry 2:e117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khera R, Das N (2009) Complement receptor 1: disease associations and therapeutic implications. Mol Immunol 46(5):761–772

    Article  CAS  PubMed  Google Scholar 

  • Koren J, Jinwal UK et al (2009) Chaperone signalling complexes in Alzheimer’s disease. J Cell Mol Med 13(4):619–630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krych-Goldberg M, Atkinson JP (2001) Structure–function relationships of complement receptor type 1. Immunol Rev 180:112–122

    Article  CAS  PubMed  Google Scholar 

  • Kuusisto J, Koivisto K, Kervinen K et al (1994) Association of apolipoprotein E phenotypes with late onset Alzheimer’s disease: population based study. BMJ 309(6955):636–638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwok JB (2010) Role of epigenetics in Alzheimer’s and Parkinson’s disease. Epigenomics 2(5):671–682

    Article  CAS  PubMed  Google Scholar 

  • Lambert JC, Heath S, Even G et al (2009) Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 41:1094–1099

    Article  CAS  PubMed  Google Scholar 

  • Lambert JC, Zelenika D, Hiltunen M et al (2011) Evidence of the association of BIN1 and PICALM with the AD risk in contrasting European populations. Neurobiol Aging 32(4):756.e11–5

    Article  Google Scholar 

  • Lazarczyk MJ, Hof PR, Bouras C, Giannakopoulos P (2012) Preclinical Alzheimer disease: identification of cases at risk among cognitively intact older individuals. BMC Med 10:127

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee JH, Cheng R, Barral S et al (2011) Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Arch Neurol 68(3):320–328

    Article  PubMed Central  PubMed  Google Scholar 

  • Mahley RW, Rall SC (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    Article  CAS  PubMed  Google Scholar 

  • Masoodi TA, Al Shammari SA, Al-Muammar MN, Alhamdan AA, Talluri VR (2013) Exploration of deleterious single nucleotide polymorphisms in late-onset Alzheimer disease susceptibility genes. Gene 512(2):429–437

    Article  CAS  PubMed  Google Scholar 

  • Mei Sian C, Sahadevan S (2005) Preclinical Alzheimer’s disease: diagnosis and prediction of progression. Lancet Neurol 4:576–579

    Article  Google Scholar 

  • Naj AC, Jun G, Beecham GW (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohara T, Ninomiya T, Hirakawa Y et al (2012) Association study of susceptibility genes for late-onset Alzheimer’s disease in the Japanese population. Psychiatr Genet 22:290–293

    Article  CAS  PubMed  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    Article  CAS  PubMed  Google Scholar 

  • Rao AT, Degnan AJ, Levy LM (2014) Genetics of Alzheimer disease. AJNR Am J Neuroradiol 35(3):457–458

    Article  CAS  PubMed  Google Scholar 

  • Rogaev EI (1999) Genetic factors and a polygenic model of Alzheimer’s disease. Genetika 35(11):1558–1571

    CAS  PubMed  Google Scholar 

  • Rogaev EI, Sherrington R, Rogaeva EA et al (1995) Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 376:775–778

    Article  CAS  PubMed  Google Scholar 

  • Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47:387–400

    Article  CAS  PubMed  Google Scholar 

  • Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop et al (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472

    Article  CAS  PubMed  Google Scholar 

  • Schmechel DE, Saunders AM, Strittmatter WJ et al (1993) Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci 90:9649–9653

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seshadri S, Fitzpatrick AL, Ikram MA et al (2010) Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 303(18):1832–1840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Belbin O, Medway C et al (2012) Genetic variants influencing human aging from late-onset Alzheimer’s disease (LOAD) genome-wide association studies (GWAS). Neurobiol Aging 33(8):1849e5–1849e18

    Article  Google Scholar 

  • Stanford JW (2004) APOE genotype effects on Alzheimer’s disease onset and epidemiology. J Mol Neurosci 23:157–165

    Article  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90:1977–1981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Styczyñska M, Strosznajder JB, Religa D et al (2008) Association between genetic and environmental factors and the risk of Alzheimer’s disease. Folia Neuropathol 46(4):249–254

    PubMed  Google Scholar 

  • Tan JT, Yu W, Zhang ZC et al (2012) Association of GWAS-linked loci with late-onset Alzheimer’s disease in a northern Han Chinese population. Alzheimers Dement 9(5):546–553

    Article  PubMed  Google Scholar 

  • Tan MS, Yu JT, Tan L (2013) Bridging integrator 1 (BIN1): form, function, and Alzheimer’s disease. Trends Mol Med 19(10):594–603

    Article  CAS  PubMed  Google Scholar 

  • Tebar F, Bohlander SK, Sorkin A (1999) Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. Mol Biol Cell 10:2687–2702

  • The Dementia Study Group of the Italian Neurological Society (2000) Guidelinesfor the diagnosis of dementia and Alzheimer’s disease. Ital J Neurol Sci 21:187–194

  • van Rossum IA, Vos S, Handels R, Visser PJ (2010) Biomarkers as predictors for conversion from mild cognitive impairment to Alzheimer-type dementia implications for trial design. J Alzheimers Dis 20(3):881–891

    PubMed  Google Scholar 

  • Wijsman EW, Nathan DP, Yoonha C et al (2011) Genome-wide association of familial late-onset Alzheimer’s disease replicates BIN1 and CLU and nominates CUGBP2 in interaction with APOE. PLoS Genet 7(2):e1001308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zawia N, Lahiri DK, Cardozo-Pelaez F (2009) Epigenetics, oxidative stress and Alzheimer’s disease. Free Radic Biol Med 46(9):1241–1249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Gharesouran.

Additional information

Jalal Gharesouran and Maryam Rezazadeh have equal contribution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharesouran, J., Rezazadeh, M., Khorrami, A. et al. Genetic Evidence for the Involvement of Variants at APOE, BIN1, CR1, and PICALM Loci in Risk of Late-Onset Alzheimer’s Disease and Evaluation for Interactions with APOE Genotypes. J Mol Neurosci 54, 780–786 (2014). https://doi.org/10.1007/s12031-014-0377-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0377-5

Keywords

Navigation