Skip to main content
Log in

Upregulation of CRM1 Relates to Neuronal Apoptosis after Traumatic Brain Injury in Adult Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) initiates a complex series of neurochemical and signaling changes that leads to neuronal dysfunction and over-reactive astrocytes. There is increasing evidence that CRM1 mediated P27Kip1, which is a potent inhibitor of G1 cyclin-dependent kinases complexes, nuclear export-dependent or -independent Jab1/CSN5, and cytoplasmic degradation in cells. Up to now, the function of CRM1 in central nervous system (CNS) is still with limited acquaintance. In our study, to investigate whether CRM1 is involved in CNS lesion, we performed a TBI model in adult rats. Western blot and RT-PCR analysis revealed that the level of protein and mRNA of CRM1 increased in ipsilateral brain cortex in comparison to the contralateral. Immunohistochemistry and immunofluorescence double labeling indicated that CRM1 was shutting into nucleus around the wound, and increased CRM1 co-localized with P27Kip1. Terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling (TUNEL) staining suggested that CRM1 was involved in neuronal apoptosis after brain injury. We also investigated co-localization of CRM1 and active-caspase-3 in the ipsilateral brain cortex. In addition, the expression patterns of Bax and active-caspase-3 were parallel with that of CRM1. Based on our data, we suggested that CRM1 might play an important role in neuronal apoptosis following TBI, and might provide a basis for the further study on its role in regulating the expression of P27Kip1 and cell cycle re-entry in TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TBI:

Traumatic brain injury

CRM1:

Chromosomal region maintenance 1

P-P27Ser10:

Phosphorylation of P27Kip1 on serine 10

PCNA:

Proliferating cell nuclear antigen

TUNEL:

Terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick end labeling

PVDF:

Polyvinylidene difluoride filter

CNS:

Central nervous system

NeuN:

Neuronal nuclei

GFAP:

Glial fibrillary acidic protein

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

DAPI:

4′,6-Diamidino-2-phenylindole

PAGE:

Polyacrylamide gel electrophoresis

CDK:

Cyclin-dependent kinase

SCF:

Skp1/Cul-1/F box protein

ERK:

Extracellular signal-regulated kinase

KPC:

Kip1 ubiquitination-promoting complex

LMB:

Leptomycin B

SDS:

Sodium dodecyl sulfate

BSA:

Bovine serum albumin

DAB:

Diaminobenzidine

PBS:

Phosphate buffer solution

GILZ:

Glucocorticoid-induced Leucine Zipper

JNK:

c-Jun NH2-terminal kinase

VEEV:

Venezuelan equine encephalitis virus

References

  • Atasheva S, Fish A, Fornerod M, Frolova EI (2010) Venezuelan equine encephalitis virus capsid protein forms a tetrameric complex with CRM1 and importin alpha/beta that obstructs nuclear pore complex function. J Virol 84:4158–4171

    Article  PubMed  CAS  Google Scholar 

  • Becker EB, Bonni A (2004) Cell cycle regulation of neuronal apoptosis in development and disease. Prog Neurobiol 72:1–25

    Article  PubMed  CAS  Google Scholar 

  • Boehm M, Yoshimoto T, Crook MF, Nallamshetty S, True A, Nabel GJ, Nabel EG (2002) A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J 21:3390–3401

    Article  PubMed  CAS  Google Scholar 

  • Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1:193–199

    Article  PubMed  CAS  Google Scholar 

  • Chen AJ, D’Esposito M (2010) Traumatic brain injury: from bench to bedside [corrected] to society. Neuron 66:11–14

    Article  PubMed  CAS  Google Scholar 

  • Chiu WT, Huang SJ, Tsai SH, Lin JW, Tsai MD, Lin TJ, Huang WC (2007) The impact of time, legislation, and geography on the epidemiology of traumatic brain injury. J Clin Neurosci 14:930–935

    Article  PubMed  Google Scholar 

  • Clavel S, Siffroi-Fernandez S, Coldefy AS, Boulukos K, Pisani DF, Derijard B (2010) Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol 30:470–480

    Article  PubMed  CAS  Google Scholar 

  • Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM (2003) CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell 14:201–213

    Article  PubMed  CAS  Google Scholar 

  • Coronado VG, Xu L, Basavaraju SV, McGuire LC, Wald MM, Faul MD, Guzman BR, Hemphill JD (2011) Surveillance for traumatic brain injury-related deaths—United States, 1997–2007. MMWR Surveill Summ 60:1–32

    PubMed  Google Scholar 

  • Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997) CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Foster JS, Fernando RI, Ishida N, Nakayama KI, Wimalasena J (2003) Estrogens down-regulate p27Kip1 in breast cancer cells through Skp2 and through nuclear export mediated by the ERK pathway. J Biol Chem 278:41355–41366

    Article  PubMed  CAS  Google Scholar 

  • Fukuda M, Asano S, Nakamura T, Adachi M, Yoshida M, Yanagida M, Nishida E (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311

    Article  PubMed  CAS  Google Scholar 

  • Holloway RG, Quill TE (2010) Treatment decisions after brain injury—tensions among quality, preference, and cost. N Engl J Med 362:1757–1759

    Article  PubMed  CAS  Google Scholar 

  • Ishida N, Hara T, Kamura T, Yoshida M, Nakayama K, Nakayama KI (2002) Phosphorylation of p27Kip1 on serine 10 is required for its binding to CRM1 and nuclear export. J Biol Chem 277:14355–14358

    Article  PubMed  CAS  Google Scholar 

  • Johnson EA, Svetlov SI, Pike BR, Tolentino PJ, Shaw G, Wang KK, Hayes RL, Pineda JA (2004) Cell-specific upregulation of survivin after experimental traumatic brain injury in rats. J Neurotrauma 21:1183–1195

    Article  PubMed  Google Scholar 

  • Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S, Yoshida M, Nakayama K, Nakayama KI (2004) Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 6:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Konigsmark BW, Murphy EA (1970) Neuronal populations in the human brain. Nature 228:1335–1336

    Article  PubMed  CAS  Google Scholar 

  • Kudo N, Wolff B, Sekimoto T, Schreiner EP, Yoneda Y, Yanagida M, Horinouchi S, Yoshida M (1998) Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res 242:540–547

    Article  PubMed  CAS  Google Scholar 

  • Latre de Late P, Pepin A, Assaf-Vandecasteele H, Espinasse C, Nicolas V, Asselin-Labat ML, Bertoglio J, Pallardy M, Biola-Vidamment A (2010) Glucocorticoid-induced leucine zipper (GILZ) promotes the nuclear exclusion of FOXO3 in a Crm1-dependent manner. J Biol Chem 285:5594–5605

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Wang Y, Cheng C, Chen Y, Shi S, Qin J, Xiao F, Zhou D, Lu M, Lu Q, Shen A (2010) A relationship between p27(kip1) and Skp2 after adult brain injury: Implications for glial proliferation. J Neurotrauma 27:361–371

    Article  PubMed  Google Scholar 

  • Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7:366–377

    Article  PubMed  CAS  Google Scholar 

  • Logan A, Frautschy SA, Gonzalez AM, Baird A (1992) A time course for the focal elevation of synthesis of basic fibroblast growth factor and one of its high-affinity receptors (flg) following a localized cortical brain injury. J Neurosci 12:3828–3837

    PubMed  CAS  Google Scholar 

  • Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    Article  PubMed  Google Scholar 

  • Maegele M, Engel D, Bouillon B, Lefering R, Fach H, Raum M, Buchheister B, Schaefer U, Klug N, Neugebauer E (2007) Incidence and outcome of traumatic brain injury in an urban area in Western Europe over 10 years. Eur Surg Res 39:372–379

    Article  PubMed  CAS  Google Scholar 

  • Martins ET, Linhares MN, Sousa DS, Schroeder HK, Meinerz J, Rigo LA, Bertotti MM, Gullo J, Hohl A, Dal-Pizzol F, Walz R (2009) Mortality in severe traumatic brain injury: a multivariated analysis of 748 Brazilian patients from Florianopolis City. J Trauma 67:85–90

    Article  PubMed  Google Scholar 

  • Melchior F, Paschal B, Evans J, Gerace L (1993) Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J Cell Biol 123:1649–1659

    Article  PubMed  CAS  Google Scholar 

  • Mock C, Joshipura M, Goosen J, Lormand JD, Maier R (2005) Strengthening trauma systems globally: the Essential Trauma Care Project. J Trauma 59:1243–1246

    Article  PubMed  Google Scholar 

  • Moore MS, Blobel G (1993) The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365:661–663

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Thieke K, Burgin A, Dickmanns A, Eilers M (2000) Cyclin E-mediated elimination of p27 requires its interaction with the nuclear pore-associated protein mNPAP60. EMBO J 19:2168–2180

    Article  PubMed  CAS  Google Scholar 

  • Park E, Bell JD, Siddiq IP, Baker AJ (2009) An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. J Cereb Blood Flow Metab 29:575–584

    Article  PubMed  CAS  Google Scholar 

  • Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439

    Article  PubMed  CAS  Google Scholar 

  • Rodier G, Montagnoli A, Di Marcotullio L, Coulombe P, Draetta GF, Pagano M, Meloche S (2001) p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J 20:6672–6682

    Article  PubMed  CAS  Google Scholar 

  • Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE (1997) Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 11:1464–1478

    Article  PubMed  CAS  Google Scholar 

  • Shen A, Wang Y, Zhao Y, Zou L, Sun L, Cheng C (2009) Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65:153–159, discussion 159–160

    Article  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Smitherman M, Lee K, Swanger J, Kapur R, Clurman BE (2000) Characterization and targeted disruption of murine Nup50, a p27(Kip1)-interacting component of the nuclear pore complex. Mol Cell Biol 20:5631–5642

    Article  PubMed  CAS  Google Scholar 

  • Stade K, Ford CS, Guthrie C, Weis K (1997) Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Stoica BA, Byrnes KR, Faden AI (2009) Cell cycle activation and CNS injury. Neurotox Res 16:221–237

    Article  PubMed  Google Scholar 

  • Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U, Krek W (1999) p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nat Cell Biol 1:207–214

    Article  PubMed  CAS  Google Scholar 

  • Swanson C, Ross J, Jackson PK (2000) Nuclear accumulation of cyclin E/Cdk2 triggers a concentration-dependent switch for the destruction of p27Xic1. Proc Natl Acad Sci U S A 97:7796–7801

    Article  PubMed  CAS  Google Scholar 

  • Tomoda K, Kubota Y, Arata Y, Mori S, Maeda M, Tanaka T, Yoshida M, Yoneda-Kato N, Kato JY (2002) The cytoplasmic shuttling and subsequent degradation of p27Kip1 mediated by Jab1/CSN5 and the COP9 signalosome complex. J Biol Chem 277:2302–2310

    Article  PubMed  CAS  Google Scholar 

  • Tomoda K, Kubota Y, Kato J (1999) Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398:160–165

    Article  PubMed  CAS  Google Scholar 

  • Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H (1999) p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9:661–664

    Article  PubMed  CAS  Google Scholar 

  • Vlach J, Hennecke S, Amati B (1997) Phosphorylation-dependent degradation of the cyclin-dependent kinase inhibitor p27. EMBO J 16:5334–5344

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Shi W, Zhao W, Shao B, Yuan Q, Li C, Zhang S, Sun B, Wu Q, Chen J (2012) Changes in Pirh2 and p27kip1 expression following traumatic brain injury in adult rats. J Mol Neurosci 46:184–191

    Article  PubMed  CAS  Google Scholar 

  • Yattoo G, Tabish A (2008) The profile of head injuries and traumatic brain injury deaths in Kashmir. J Trauma Manag Outcomes 2:5

    Article  PubMed  Google Scholar 

  • Zhang H, Kobayashi R, Galaktionov K, Beach D (1995) p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82:915–925

    Article  PubMed  CAS  Google Scholar 

  • Zou F, Xu J, Fu H, Cao J, Mao H, Gong M, Cui G, Zhang Y, Shi W, Chen J (2013) Different functions of HIPK2 and CtBP2 in traumatic brain injury. J Mol Neurosci 49:395–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.31071288) and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiyun Wu or Xingxing Gu.

Additional information

Aihong Li and Feihui Zou contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, A., Zou, F., Fu, H. et al. Upregulation of CRM1 Relates to Neuronal Apoptosis after Traumatic Brain Injury in Adult Rats. J Mol Neurosci 51, 208–218 (2013). https://doi.org/10.1007/s12031-013-9994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-9994-7

Keywords

Navigation