Skip to main content
Log in

Coupling of Proton Binding in Extracellular Domain to Channel Gating in Acid-Sensing Ion Channel

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Protonation of several amino acid residues in the extracellular domain (ECD) of acid-sensing ion channel (ASIC) causes conformational changes that lead to opening of the channel. It is not clear how conformational changes in ECD are coupled to channel gating. Here, we show that the loop connecting β9 and α4 at the base of the thumb region of ECD interacts with post-TM1 to stabilize the channel in the closed state. Flexibility of these two regions is important for optimum gating of the channel. In ASIC1a, when Y71 (post-TM1) and W287 (β9–α4 loop) were mutated to cysteine, they formed disulfide bond in the closed state. Breaking of the disulfide bond by reducing agent dithiothreitol (DTT) or tris(2-carboxyethyl)phosphine (TCEP) potentiated the current significantly. Engineered cysteine G288C reacted with sulfhydryl-specific methanethiosulfonate ethyltrimethylammonium (MTSET) in the open state but not in closed/steady desensitized state, suggesting gating-associated conformational movement of this loop. We also identified a salt bridge between highly conserved R64 at TM1 and D432 at TM2 that is important for optimum gating.

Based on our results and other published work, we propose that proton binding in ECD is followed by the displacement of the β9–α4 loop of the thumb, leading to the rotation of TM1. Conformational movement propagates to TM2 and the channel gate opens by the concomitant movement of TM2 and breaking of the salt bridge between R64 and D432.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akabas MH, Stauffer DA, Xu M, Karlin A (1992) Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science 258:307–310

    Article  PubMed  CAS  Google Scholar 

  • Alvarez de la Rosa D, Krueger SR, Kolar A, Shao D, Fitzsimonds RM, Canessa CM (2003) Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J Physiol 546:77–87

    Article  PubMed  CAS  Google Scholar 

  • Babini E, Paukert M, Geisler HS, Gründer S (2002) Alternative splicing and interaction with di- and polyvalent cations control the dynamic range of acid sensing ion channel 1 (ASIC1). J Biol Chem 277:41597–41603

    Article  PubMed  CAS  Google Scholar 

  • Baconguis I, Gouaux E (2012) Structural plasticity and dynamic selectivity of acid-sensing ion channel–spider toxin complexes. Nature 489:400–405

    Article  PubMed  CAS  Google Scholar 

  • Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ, Snyder PM (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci USA 99:2338–2343

    Article  PubMed  CAS  Google Scholar 

  • Careaga CL, Falke JJ (1992) Structure and dynamics of Escherichia coli chemosensory receptors: engineered sulfhydryl studies. Biophys J 62:209–216, discussion 217–219

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron specific, proton-gated ion channel. Proc Natl Acad Sci USA 95:10240–10245

    Article  PubMed  CAS  Google Scholar 

  • Cho JH, Askwith CC (2007) Potentiation of acid-sensing ion channels by sulfhydryl compounds. Am J Physiol Cell Physiol 292:C2161–C2174

    Article  PubMed  CAS  Google Scholar 

  • Chu XP, Close N, Saugstad JA, Xiong ZG (2006) ASIC1a-specific modulation of acid-sensing ion channels in mouse cortical neurons by redox reagents. J Neurosci 26:5329–5339

    Article  PubMed  CAS  Google Scholar 

  • Deval E, Noel J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E (2008) ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 27:3047–3055

    Article  PubMed  CAS  Google Scholar 

  • Duan B, Wu LJ, Yu YQ, Ding Y, Jing L, Xu L, Chen J, Xu TL (2007) Upregulation of acid sensing ion channel ASIC1a in spinal dorsal horn neurons contributes to inflammatory pain hypersensitivity. J Neurosci 27:11139–11148

    Article  PubMed  CAS  Google Scholar 

  • Friese MA, Craner MJ, Etzensperger R, Vergo S, Wemmie JA, Welsh MJ, Vincent A, Fugger L (2007) Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system. Nat Med 13:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Getz EB, Xiao M, Chakrabarty T, Cooke R, Selvin PR (1999) A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal Biochem 273:73–80

    Article  PubMed  CAS  Google Scholar 

  • Gonzales EB, Kawate T, Gouaux E (2009) Pore architecture and ion sites in acid-sensing ion channels and P2X receptors. Nature 460:599–604

    Article  PubMed  CAS  Google Scholar 

  • Gründer S, Augustinowski K (2012) Toxin binding reveals two open state structures for one acid-sensing ion channel. Channels (Austin) 6:409–413

    Article  Google Scholar 

  • Hesselager M, Timmermann DB, Ahring PK (2004) pH dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J Biol Chem 279:11006–11015

    Article  PubMed  CAS  Google Scholar 

  • Huque T, Cowart BJ, Dankulich-Nagrudny L, Pribitkin EA, Bayley DL, Spielman AI (2009) Sour ageusia in two individuals implicates ion channels of the ASIC and PKD families in human sour taste perception at the anterior tongue. PLoS One 4:e7347

    Article  PubMed  Google Scholar 

  • Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 Å resolution and low pH. Nature 449:316–323

    Article  PubMed  CAS  Google Scholar 

  • O'Hagan R, Chalfie M (2006) Mechanosensation in Caenorhabditis elegans. Int Rev Neurobiol 69:169–203

    Article  PubMed  Google Scholar 

  • Li T, Yang Y, Canessa CM (2011) Asp433 in the closing gate of ASIC1 determines stability of the open state without changing properties of the selectivity filter or Ca2+ block. J Gen Physiol 137:289–297

    Article  PubMed  CAS  Google Scholar 

  • Li T, Yang Y, Canessa CM (2009) Interaction of the aromatics Tyr-72/Trp-288 in the interface of the extracellular and transmembrane domains is essential for proton gating of acid-sensing ion channels. J Biol Chem 284:4689–4694

    Article  PubMed  CAS  Google Scholar 

  • Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282:17325–17329

    Article  PubMed  CAS  Google Scholar 

  • Tolino LA, Okumura S, Kashlan OB, Carattino MD (2011) Insights into the mechanism of pore opening of acid-sensing ion channel 1A. J Biol Chem 286:16297–16307

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Duan B, Xu H, Xu L, Xu TL (2006) Calcium-permeable acid-sensing ion channel is a molecular target of the neurotoxic metal ion lead. J Biol Chem 281:2497–2505

    Article  PubMed  CAS  Google Scholar 

  • Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, Lazdunski M (1997) Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272:20975–20978

    Article  PubMed  CAS  Google Scholar 

  • Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29:578–586

    Article  PubMed  CAS  Google Scholar 

  • Wemmie JA, Chen JG, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Welsh MJ (2002) The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463–477

    Article  PubMed  CAS  Google Scholar 

  • Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Science and Technology, India. Sandip M. Swain received a doctoral fellowships from the University Grant Commission, India. We acknowledge Mrityunjay for helping with the computational graphics. Special thanks to Divya for her efforts in correcting the manuscript. We are grateful to Francois Rugiero (University College London, UK) for providing rASIC1a construct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Kanti Bera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swain, S.M., Bera, A.K. Coupling of Proton Binding in Extracellular Domain to Channel Gating in Acid-Sensing Ion Channel. J Mol Neurosci 51, 199–207 (2013). https://doi.org/10.1007/s12031-013-9991-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-9991-x

Keywords

Navigation