Skip to main content
Log in

Proton pump inhibitors have pH-dependent effects on the thermostability of the carboxyl-terminal domain of voltage-gated proton channel Hv1

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The voltage-gated proton channel Hv1 is highly selective for H+ and is activated by membrane depolarization and pH gradient. An increased external and decreased internal pH opens the Hv1 channel. The intracellular C-terminal domain of Hv1 is responsible for channel dimerization, cooperative, and thermosensitive gating. Here, we found that proton pump inhibitors (PPIs) interact with the C-terminal domain of human Hv1. The interaction between PPIs and the C-terminal domain, which is pH-dependent, lowered the thermal and structural stability of the protein at pH 4, but enhanced the thermal and structural stability at pH 8. Furthermore, we investigated in vitro the interaction of PPIs with the C-terminal domain of Hv1 by fluorescence and micro-Raman spectra. Fluorescence quenching measurements revealed that the interaction between the C-terminal domain and PPIs is a mainly hydrophobic interaction. The micro-Raman spectra showed that PPIs did not form stable disulfide bonds with the unique thiol group within this domain (Cys249 residue). The preferential interaction of PPIs with the inactive form of Hv1 stabilizes the high pH inactive state of the C-terminal domain, indicating a mechanism by which PPIs might act explicitly on the stabilization of a closed state of the proton channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bandekar J, Krimm S (1980) Vibrational analysis of peptides, polypeptides, and proteins. VI. Assignment of beta-turn modes in insulin and other proteins. Biopolymers 19:31–36

    Article  CAS  PubMed  Google Scholar 

  • Besancon M, Simon A, Sachs G, Shin JM (1997) Sites of reaction of the gastric H +/K + -ATPase with extracytoplasmic thiol reagents. J Biol Chem 272:22438–22446

    Article  CAS  PubMed  Google Scholar 

  • DeCoursey TE (2003) Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83:475–579

    Article  CAS  PubMed  Google Scholar 

  • DeCoursey TE (2008) Voltage-gated proton channels. Cell Mol Life Sci 65:2554–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeCoursey TE (2013) Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the Hv family. Physiol Rev 93:599–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeCoursey TE, Cherny VV (1998) Temperature dependence of voltage-gated H-currents in human neutrophils, rat alveolar epithelialcells, and mammalian phagocytes. J Gen Physiol 112:503–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder C, DeCoursey TE (2001) Voltage-gated proton channels in microglia. Prog Neurobiol 64:277–305

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Kurokawa T, Takeshita K, Kobayashi M, Okochi Y, Nakagawa A, Okamura Y (2012) The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H+ channel Hv1. Nat Commun 3:816

    Article  PubMed  Google Scholar 

  • Fujiwara Y, Kurokawa T, Takeshita K, Nakagawa A, Larsson HP, Okamura Y (2013a) Gating of the designed trimeric/tetrameric voltage-gated H+ channel. J Physiol 591:627–640

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara Y, Takeshita K, Nakagawa A, Okamura Y (2013b) Structural characteristics of the Redox-sensing coiled coil in the voltage-gated H+ channel. J Biol Chem 288:17968–17975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez C, Koch HP, Drum BM, Larsson HP (2009) Strong cooperativity between subunits in voltage-gated proton channels. Nat Struct Mol Biol 17:51–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Gribenko AV, Patel MM, Liu J, Wang C, Makhatadze GI (2009) Rational stabilization of enzymes by computational redesign of surface charge-charge interactions. Proc Natl Acad Sci USA 106(8):2601–2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling DJ, Fallowfield C, Underwood AH (1987) The specificity of omeprazole as an H+/K+-ATPase inhibitor depends upon the means of its activation. Biochem Pharmacol 36:339–344

    Article  CAS  PubMed  Google Scholar 

  • Kuipers E, Nelis G, Klinkenberg-Knol E, Snel P, Goldfain D, Kolkman J, Festen H, Dent J, Zeitoun P, Havu N (2004) Cure of Helicobacter pylori infection in patients with reflux oesophagitis treated with long term omeprazole reverses gastritis without exacerbation of reflux disease: results of a randomised controlled trial. Gut 53:12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuno M, Kawawaki J, Nakamura F (1997) A highly temperaturesensitive proton current in mouse bone marrow-derived mast cells. J Gen Physiol 109:731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen: a probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Letts JA, MacKinnon R (2008) Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1. Proc Natl Acad Sci 105:7692–7695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SJ, Zhao Q, Zhou Q, Zhai Y (2009) Expression, purification, crystallization and preliminary crystallographic study of the carboxyl-terminal domain of the human voltage-gated proton channel Hv1. Acta Crystallogr F65:279–281

    Google Scholar 

  • Li SJ, Zhao Q, Zhou Q, Unno H, Zhai Y, Sun F (2010) The role and structure of the carboxyl-terminal domain of the human voltage-gated proton channel Hv1. J Biol Chem 285:12047–12054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindberg P, Nordberg P, Alminger T, Braendstroem A, Wallmark B (1986) The mechanism of action of the antisecretory agent omeprazole. J Med Chem 29:1327–1329

    Article  CAS  PubMed  Google Scholar 

  • Marino M, Fais S, Djavaheri-Mergny M, Villa A, Meschini S, Lozupone F, Venturi G, Mina Della F, Pattingre S, Rivoltini L (2010) Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells. Cell Death Dis 1:e87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason JM, Hagemann UB, Arndt KM (2007) Improved stability of the Jun-Fos activator protein-1 coiled-coil motif a stopped-flow circular dichroism kinetic analysis. J Biol Chem 282:23015–23024

    Article  CAS  PubMed  Google Scholar 

  • McColl K (2004) Helicobacter pylori infection and long term proton pump inhibitor therapy. Gut 53:5–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milito DA, Iessi E, Logozzi M, Lozupone F, Spada M, Marino ML, Federici C, Perdicchio M, Matarrese P, Lugini L (2007) Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species. Cancer Res 67:5408–5417

    Article  PubMed  Google Scholar 

  • Moriyama Y, Patel V, Ueda I, Futai M (1993) Evidence for a common binding-site for omeprazole and N-ethylmaleimide in subunit A of Chromaffin Granule Vacuolar-Type H+-ATPase. Biochem Biophys Res Commun 196:699–706

    Article  CAS  PubMed  Google Scholar 

  • Musset B, DeCoursey TE (2012) Biophysical properties of the voltage-gated proton channel HV1. WIREs Membr Transp Signal 1:605–620

    Article  CAS  Google Scholar 

  • Naunton M, Peterson G, Bleasel M (2008) Overuse of proton pump inhibitors. J Clin Pharmacol Ther 25:333–340

    Article  Google Scholar 

  • Ramsey IS, Moran MM, Chong JA, Clapham DE (2006) A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsey IS, Ruchti E, Kaczmarek JS, Clapham DE (2009) Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc Natl Acad Sci 106:7642–7647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rich AM, Bombarda E, Schenk AD, Lee PE, Cox EH, Spuches AM, Hudson LD, Kieffer B, Wilcox DE (2012) Thermodynamics of Zn2 + Binding to Cys2His2 and Cys2HisCys Zinc Fingers and a Cys4 Transcription Factor Site. J Am Chem Soc 134:10405–10418

    Article  CAS  PubMed  Google Scholar 

  • Ross DP, Sabramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  CAS  PubMed  Google Scholar 

  • Sabolic I, Brown D, Verbavatz JM, Kleinman J (1994) H+-ATPases of renal cortical and medullary endosomes are differentially sensitive to Sch-28080 and omeprazole. Am J Physiol 266:F868–F877

    CAS  PubMed  Google Scholar 

  • Sasaki M, Takagi M, Okamura Y (2006) A voltage sensor-domain protein is a voltage-gated proton channel. Science 312:589–592

    Article  CAS  PubMed  Google Scholar 

  • Schweiker KL, Makhatadze GI (2009) A computational approach for the rational design of stable proteins and enzymes: optimization of surface charge-charge interactions. Methods Enzymol 454:175–211

    Article  CAS  PubMed  Google Scholar 

  • Senn-Bilfinger J, Krueger U, Sturm E, Figala V, Klemm K, Kohl B, Rainer G, Schaefer H, Blake TJ (1987) H+/K+-ATPase inhibiting 2-[(2-pyridylmethyl) sulfinyl] benzimidazoles. 2. The reaction cascade induced by treatment with acids. Formation of 5H-pyrido [1′, 2′: 4, 5][1, 2, 4] thiadiazino [2, 3-a] benzimidazol-13-ium salts and their reactions with thiols. J Org Chem 52:4582–4592

    Article  CAS  Google Scholar 

  • Sonnichsen FD, Van Eyk JE, Hodges RS, Sykes BD (1992) Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry 31:8790–8798

    Article  CAS  PubMed  Google Scholar 

  • Strickler SS, Gribenko AV, Gribenko AV, Keiffer TR, Tomlinson J, Reihle T, Loladze VV, Makhatadze GI (2006) Protein stability and surface electrostatics: a charged relationship. Biochemistry 45(9):2761–2766

    Article  CAS  PubMed  Google Scholar 

  • Suenaga T, Arase H, Yamasaki S, Kohno M, Yokosuka T, Takeuchi A, Hattori T, Saito T (2007) Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function. Eur J Immunol 37:3197–3207

    Article  CAS  PubMed  Google Scholar 

  • Tu AT (1986) Spectroscopy of biological system. Wiley, New York, p 47

    Google Scholar 

  • Wang Y, Li SJ, Wu X, Che Y, Li Q (2012) Clinicopathological and biological, significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J Biol Chem 287:13877–13888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ware WR (1962) Oxygen quenching in fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66:455–458

    Article  CAS  Google Scholar 

  • Wolfe MM, Sachs G (2000) Acid suppression: optimizing therapy for gastroduodenal ulcer healing, gastroesophageal reflux disease, and stress-related erosive syndrome. Gastroenterology 118:S9–S31

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wang Y, Li SJ (2014) Lansoprazole induces apoptosis of breast cancer cells through inhibition of intracellular proton extrusion. Biochem Biophys Res Commun 448:424–429

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Zhang Y, Li SJ (2014) Interaction of divalent metal ions with the carboxyl-terminal domain of human voltage gated proton channel Hv1. Biometals 27:793–802

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Li C, Li SJ (2015) The pH-sensitive structure of the C-terminal domain of voltage-gated proton channel and the thermodynamic characteristics of Zn2+ binding to this domain. Biochem Biophys Res Commun 456:207–212

    Article  CAS  PubMed  Google Scholar 

  • Zhou NE, Kay CM, Hodges RS (1992) Synthetic model proteins. Positional effects of interchain hydrophobic interactions on stability of two-stranded alpha-helical coiled-coils. J Biol Chem 267(4):2664–2670

    CAS  PubMed  Google Scholar 

  • Zhou NE, Kay CM, Hodges RS (1993) Disul-fide bond contribution to protein stability—pos-itional effects of substitution in the hydrophobiccore of the 2-stranded alpha-helical coiled-coil. Biochemistry 32:3178–3187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 30970579 and 31271464), the Ph.D. Programs Foundation of Ministry of Education of China (Nos. 20110031110004 and 20120031110028), the Basic Science and Advance Technology Research Program of Tianjin (No. 14JCYBJC23400), and the China Postdoctoral Science Foundation Funded Project (No. 2015M581289). This research is based on the Cooperative Research Project of Research Institute of Electronics, Shizuoka University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Jie Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Zuo, W., Zhang, S. et al. Proton pump inhibitors have pH-dependent effects on the thermostability of the carboxyl-terminal domain of voltage-gated proton channel Hv1. Eur Biophys J 47, 237–247 (2018). https://doi.org/10.1007/s00249-017-1253-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-017-1253-3

Keywords

Navigation